• 1
    Aerts, A. M., François, I. E., Cammue, B. P. and Thevissen, K., The mode of antifungal action of plant, insect and human defensins. Cell. Mol. Life Sci., 2008, 65, 20692079.
  • 2
    Almagro, L., Ros, Gomez L. V., Belchi-Navarro, S., Bru, R., Barcelo, Ros A. and Pedreno, M. A., Class III peroxidases in plant defence reactions. J. Exp. Bot., 2009, 60, 377390.
  • 3
    Altenbach, B. S., Kothari, M. K., Tanaka K. C. and Hurkman J. W., Genes encoding the PR-4 protein wheatwin are developmentally regulated in wheat grains and respond to high temperatures during grainfill. Plant Sci., 2007, 173, 135143.
  • 4
    Altenbach, S. B., Kothari, K. M., Tanaka, C. K. and Hurkman, W. J., Expression of 9-kDa non-specific lipid transfer protein genes in developing wheat grain is enhanced by high temperatures but not by post-anthesis fertilizer. J. Cereal Sci., 2008, 47, 201213.
  • 5
    Altpeter, F., Diaz, I., McAuslane, H., Gaddour, K., Carbonero, P. and Vasil, I. K., Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breed., 1999, 5, 5363.
  • 6
    Anand, A., Lei, Z., Sumner, L. W., Mysore, K. S., Arakane, Y., Bockus, W. W. and Muthukrishnan, S., Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. Mol. Plant Microbe Interact., 2004, 17, 13061317.
  • 7
    Antimicrobial Sequences Database Home Page. http:www.bbcm.units.ittossipag1.htm last accessed November 2009).
  • 8
    Antrobus, C. J., Largep, J. and Bamforth, C. W., Changes in the cationic isoenzymes of peroxidase during the malting of barley. I: Tissue location studies. J. Inst. Brew., 1997, 103, 227231.
  • 9
    Antrobus, C. J., Largep, J. and Bamforth, C. W., Changes in the cationic isoenzymes of peroxidase during the malting of barley II: The effect of gibberellic and abscisic acid. J. Inst. Brew., 1997, 103, 233237.
  • 10
    Anžlovar, S. and Dermastia, M., The comparative analysis of osmotins and osmotin-like PR-5 proteins. Plant Biol., 2003, 5, 116124.
  • 11
    Anžlovar, S., Serra, M. D., Dermastia, M. and Menestrina, G., Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax grain. Mol. Plant Microbe Interact., 1998, 11, 610617.
  • 12
    Armentia, A., Rodríguez, R., Callejo, A., Martín-Esteban, M., Martín-Santos, J.-M., Salcedo, G., Pascual, C., Sánchez-Monge, R. and Pardo, M., Allergy after ingestion or inhalation of cereals involves similar allergens in different ages. Clin. Exp. Allergy, 2002, 32, 12161222.
  • 13
    Baik, B-K. and Ullrich, E., Barley for food: characteristics, improvement, and renewed interest., J. Cereal Sci., 2008, 48, 233242.
  • 14
    Bakan, B., Hamberg, M., Perrocheau, L., Maume, D., Rogniaux, H., Tranquet, O., Rondeau, C., Blein, J.-P., Ponchet, M. and Marion, D., Specific adduction of plant lipid transfer protein by an allene oxide generated by 9-lipoxygenase and allene oxide synthase. J. Biol. Chem., 2006, 281, 3898138988.
  • 15
    Bak-Jensen, S., Laugesen, S., Østergaard, O., Finnie, C., Roepstorff, P. and Svensson, B., Spatio-temporal profiling and degradation of α-amylase isozymes during barley seed germination. FEBS J., 2007, 25522565.
  • 16
    Bak-Jensen, S., Laugesen, S., Roepstorff, P. and Svensson, B., Two-dimensional gel electrophoresis pattern (pH 6–11) and identification of water-soluble barley seed and malt proteins by mass spectrometry. Proteomics, 2004, 4, 728742.
  • 17
    Balls, A. and Hale, W., A sulfur-bearing constituent of the petroleum ether extract of wheat flour. Cereal Chem., 1940, 17, 243288.
  • 18
    Batalia, M. A., Monzingo, A. F., Ernst, S., Roberts, W. and Robertus, J. D., The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat. Struct. Biol., 1996, 3, 1923.
  • 19
    Baur, X. and Posch, A., Characterized allergens causing bakers' asthma. Allergy, 1998, 53, 562566.
  • 20
    Blein, J.-P., Coutos-Thevenot, P., Marion, D. and Ponchet, M., From elicitins to lipid-transfer proteins: a new insight in cell signaling involved in plant defense mechanisms. Trends Plant Sci., 2002, 7, 293296.
  • 21
    Bobalova, J., Salplachta, J. and Chmelik, J., Investigation of protein composition of barley by gel electrophoresis and MALDI mass spectrometry with regard to the malting and brewing process. J. Inst. Brew., 2008, 114, 2226.
  • 22
    Bohlmann, H. and Apel, K., Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley Hordeum vulgare L. Mol. Gen. Genet., 1987, 207, 446454.
  • 23
    Bohlmann, H., Clausen, S., Behnke, S., Hiller, C., Reimann-Philipp, U., Schrader, G., Barkholt, V. and Apel, K., Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO J., 1988, 7, 15591565.
  • 24
    Bønsager, B. C., Finnie, C., Roepstorff, P. and Svensson, B., Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics, 2007, 7, 45284540.
  • 25
    Bønsager, B. C., Prætorius-Ibba, M., Nielsen, P. K. and Svensson, B., Purification and characterization of the β-trefoil fold protein barley α-amylase/subtilisin inhibitor overex-pressed in Escherichia coli. Protein Expr. Purif., 2003, 30, 185193.
  • 26
    Borad, V. and Sriram, S., Pathogenesis-related proteins for the plant protection. Asian J. Exp. Sci., 2008, 22, 189196.
  • 27
    Borén, M., Larsson, H., Falk, A. and Jansson, C., The barley starch granule proteome-internalized granule polypeptides of the mature endosperm. Plant Sci., 2004, 166, 36173626.
  • 28
    Borghesan, F., Mistrello, G., Roncarolo, D., Amato, S., Plebani, M. and Asero, R., Respiratory allergy to lipid transfer protein. Int. Arch. Allergy Immunol., 2008, 147, 161165.
  • 29
    Boutrot, F., Guirao, A., Alary, R., Joudrier, P. and Gautier, MF., Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim. Biophys. Acta, 2005, 1730, 114125.
  • 30
    Brandt, A., Svendsen, I. and Hejgaard, J., A plant serpin gene. Structure, organization and expression of the gene encoding barley protein Z4. Eur. J. Biochem., 1990, 194, 499505.
  • 31
    Brant, A., Baker's asthma. Curr. Opin. Allergy Clin. Immunol., 2007, 7, 152155.
  • 32
    Breiteneder, H., Thaumatin-like proteins — a new family of pollen and fruit allergens. Allergy, 2004, 59, 479481.
  • 33
    Breiteneder, H. and Mills, Clare E. N., Plant food allergens-structural and functional aspects of allergenicity. Biotechnol Adv., 2005, 23, 395399.
  • 34
    Breiteneder, H. and Radauer, C., A classification of plant food allergens. J. Allergy Clin. Immunol., 2004, 113, 821830.
  • 35
    Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev, Microbiol, 2005, 3, 238250.
  • 36
    Bruix, M., Jimenez, M. A., Santoro, J., Gonzalez, C., Colilla, F. J., Mendez, E. and Rico, M., Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochemistry, 1992, 32, 715724.
  • 37
    Buchner, P., Rochat, C., Wuilleme, S. and Boutin, J. P. Characterization of a tissue-specific and developmentally regulated α-1,3-glucanase gene in pea. Plant Mol. Biol., 2002, 49, 171186.
  • 38
    Buhot, N., Gomes, E., Milat, M.-L., Ponchet, M., Marion, D., Lequeu, J., Delrot, S., Coutos-Thevenot, P. and Blein, J.-P., Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol. Biol. Cell, 2004, 15, 50475052.
  • 39
    Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., van Damme, J., Osborn, R. W., Guerbette, F., Kader, J.-C. and Broekart, W. F., A potent antimicrobial protein from onion grains showing sequence homology to plant lipid transfer proteins. Plant Physiol., 1995, 109, 445455.
  • 40
    Cane, K., Sharp, P. J., Eagles, H. A., Eastwood, R. F., Hollamby, G. J., Kuchel, H., Lu, M. and Martin, P. J., The effects on grain quality traits of a grain serpin protein and the VPM1 segment in southern Australian wheat breeding. Aust. J. Agr. Res., 2008, 59, 883890.
  • 41
    Caporale, C., Di Berardino, I., Leonardi, L., Bertini, L., Cascone, A., Buonocore, V. and Caruso, C., Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett., 2004, 24, 7176.
  • 42
    Caporale, C., Facchiano, A., Bertini, L., Leonardi, L., Chilosi, G., Buonocore, V. and Caruso, C., Comparing the modeled structures of PR-4 proteins from wheat. J. Mol. Modeling, 2003, 9, 915.
  • 43
    Carbonero, P. and Garcia-Olmedo, F., A multigene family of trypsin/α-amylase inhibitors from cereals. In: Seed proteins. P. R. Shewry and R. Casey, Eds., Kluwer Academic Publishers: Dordrecht, 1999,in pp. 617633.
  • 44
    Carlini, R. C. and Grossi-de-Sá, F. M., Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon., 2002, 40, 15151539.
  • 45
    Carlson, A., Skadsen, R. and Kaeppler, H. F., Barley hordothionin accumulates in transgenic oat seeds and purified protein retains anti-fungal properties in vitro. In Vitro Cell. Dev. Biol. Plant, 2006, 42, 318323.
  • 46
    Caruso, C., Caporale, C., Chilosi, G., Vacca, F., Bertini, L., Magro, P., Poerio, E. and Buonocore, A., Structural and anti-fungal properties of a pathogenesis-related protein from wheat kernel. J. Prot. Chem., 1996, 15, 3544.
  • 47
    Caruso, C., Chilosi, G., Caporale, C., Leonardi, L., Bertini, L., Magro, P. and Buonocore, V., Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci., 1999, 140, 107120.
  • 48
    Caruso, C., Chilosi, G., Leonardi, L., Bertini, L., Magro, P., Buonocore, V. and Caporale, C., A basic peroxidase from wheat kernel with antifungal activity. Phytochem., 2001, 58, 743750.
  • 49
    Carvalho, O. A. and Gomes, M. V., Role of plant lipid transfer proteins in plant cell physiology — A concise review. Peptides, 2007, 28, 11441153.
  • 50
    Carvalho, O. A., Machado, T. L. O., da Cunha, M., Santos, S. I. and Gomes, M. V., Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seeds. Plant Physiol. Biochem., 2001, 39, 137146.
  • 51
    de Castro, C. S., DeSouza, R., Bloch, C., Ca(II)-γ-Thionin complex: Interaction studies by differential pulse voltammetry and MALDI-TOF/MS., Protein Pept. Lett., 2002, 9, 4552.
  • 52
    Castro, S. M., Gerhardt R. I., Orru, S., Pucci, P. and Bloch, C., Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J. Chromatogr. B, 2003, 794, 109114.
  • 53
    Cazalis, R., Aussenac, T., Rhazi, L., Marin, A. and Gibrat, J. F., Homology modeling and molecular dynamics simulations of the N-terminal domain of wheat high molecular weight glutenin subunit 10. Protein Sci., 2003, 12, 3443.
  • 54
    Chandrashekar, A. and Satyanarayana, K. V., Disease and pest resistance in grains of sorghum and millets. J. Cereal Sci., 2006, 44, 287304.
  • 55
    Chen, L., Garrett, P. J. T., Fincher, B. G. and Høj, B. P., A tetrad of ionizable amino acids is important for catalysis in barley β-glucanases. J. Biol. Chem., 1995, 270, 80938101.
  • 56
    Cheng, C. S., Chen, M. N., Lai, Y. T., Chen, T., Lin, K. F., Liu, Y. J. and Lyu, P. C., Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins, 2008, 70, 695706.
  • 57
    Cheng, C. S., Chen, M. N., Liu, Y. J., Huang, L. Y., Lin, K. F. and Lyu, P. C., Evaluation of plant non-specific lipid transfer proteins for potential application in drug delivery. Enzyme Microb. Tech., 2004, 35, 532539.
  • 58
    Cheng, C. S., Samuel, D., Liu, Y. J., Shyu, J. C., Lai, S. M., Lin, K. F. and Lyu, P. C., Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry, 2004, 43, 1362813636.
  • 59
    Chilosi, G., Caruso, C., Caporale, C., Leonardi, L., Bertini, L., Buzi, A., Nobile, M., Magro, P. and Buonocore, V., Antifungal activity of a Bowman-Birk-type trypsin inhibitor from wheat kernel. J. Phytopathol., 2000, 148, 477481.
  • 60
    Chiung, Y. M., Shen, H. D. and Huang, J. W., Immunoblot analysis of components of barley recognized by IgE antibodies in sera from pig farm workers. Electrophoresis, 1998, 19, 13171318.
  • 61
    Christensen, A. B., Cho, B. H., Naesby, M., Gregersen, P. L., Brandt, J., Madriz-Ordeñana, K., Collinge, D. B. and Thordal-Christensen, H., The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol. Plant Pathol., 2002, 3, 135144.
  • 62
    Cochrane, P. M., Paterson, L. and Gould, E., Changes in chalazal cell walls and in the peroxidase enzymes of the crease region during grain development in barley. J. Exp. Bot., 2000, 51, 507520.
  • 63
    Constantin, C., Quirce, S., Grote, M., Touraev, A., Swoboda, I., Stoecklinger, A., Mari, A., Thalhamer, J., Heberle-Bors, E. and Valenta, R., Molecular and immunological characterization of a wheat serine proteinase inhibitor as a novel allergen in baker's asthma. J. Immunol., 2008, 180, 74517460.
  • 64
    Curioni, A., Santucci, B., Cristaudo, A., Canistraci, C., Pietravalle, M., Simonato, B. and Giannattasio, M., Hypersensitivity to beer is due to a 10-kDa protein derived from barley. Clin. Exp. Allergy, 1999, 29, 407413.
  • 65
    Cvetković, A. and Hranisavljević, J., Molecular features in the antifungal activity of thaumatin-like proteins from barley grain. J. Serb. Chem. Soc., 1997, 62, 777786.
  • 66
    Cvetković, A., Blagojević, S. and Hranisavljević, J., Effects of pathogen-related proteins from barley grain on brewers yeast. J. Inst. Brew., 1997, 103, 183186.
  • 67
    Cvetković, A., Gorjanović, S., Hranisavljević, J. and Vučelić, D., Isolation and characterization of pathogenesis-related proteins from brewer's barley grain. J. Serb. Chem. Soc., 1997, 62, 5156.
  • 68
    van Damme, E. J. M., Charels, D., Menu-Bouaouiche, L., Proost, P., Barre, A., Rouge, P. and Willy, J. Peumans, J. W., Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree (Sambucus nigra L.). Planta, 2002, 214, 853862.
  • 69
    Davy, A., Svendsen, I., Bech, L., Simpson, D. J. and Cameron-Mills, V., LTP is not a cysteine endoprotease inhibitor in barley grains. J. Cereal Sci., 1999, 30, 237244.
  • 70
    Diaz-Perales, A., Collada, C., Blanco, C., Sanchez-Monge, R., Carrillo, T., Aragoncillo, C. and Salcedo, G., Cross-reactions in the latex-fruit syndrome: A relevant role of chitinases but not of complex asparagine-linked glycans. J. Allergy Clin. Immunol., 1999, 104, 681687.
  • 71
    Douady, D., Guerbette, F., Grosbois, M. and Kader J., Purification of phospholipid transfer protein from maize seeds using a two-step chromatographic procedure. Physiol. Veg., 1985, 23, 373380.
  • 72
    Douliez, J.-P., Jegou, S., Pato, C., Larre, C., Molle, D. and Marion, D., Identification of a new form of lipid transfer protein (LTP1) in wheat seeds. J. Agric. Food Chem., 2001, 49, 18051808.
  • 73
    Douliez, J.-P., Jegou, S., Pato, C., Molle, D., Tran, V. and Marion, D., Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. Eur. J. Biochem., 2001, 268, 384388.
  • 74
    Douliez, J.-P., Michon, T., Elmorjani, K. and Marion, D., Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci., 2000, 32, 120.
  • 75
    Douliez, J.-P., Pato, C., Rabesona, H., Molle, D. and Marion, D., Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur. J. Biochem., 2001, 268, 14001403.
  • 76
    Edreva, A., Pathogenesis-related proteins: research progress in the last 15 years. Gen. Appl. Plant Phys., 2005, 31, 105124.
  • 77
    Egorov, A. T., Odintsova, I. T., Pukhalsky, A. V. and Grishin, V. E., Diversity of wheat anti-microbial peptides. Peptides, 2005, 26, 20642073.
  • 78
    Evans, D. E. and Hejgaard, J., The impact of malt derived proteins on beer foam quality: Part I. The effect of germination and kilning on the level of protein Z4, protein Z7 and LTP1. J. Inst. Brew., 1999, 105, 159169.
  • 79
    Evans, D. E. and Sheehan, M. C., Don't be fobbed off: The substance of beer foam. J. Am. Soc. Brew. Chem., 2002, 60, 4757.
  • 80
    Farrokhi, N., Whitelegge, P. J. and Brusslan, A. J., Plant peptides and peptidomics. Plant Biotech. J., 2008, 6, 105134.
  • 81
    Faus I., Recent developments in the characterization and bio-technological production of sweet-tasting proteins. Appl. Microbiol. Biotechnol., 2000, 53, 145151.
  • 82
    Fernandez-Anaya, S., Fernandez-Crespo, J., Rodriquez, J. J., Daroca, P., Carmona, E. and Herraez, L., Beer anaphylaxis. J. Allergy Clin. Immun., 1999, 103, 959960.
  • 83
    Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., Duarte, J., Borges, A. and Teixeira, A. R., The role of plant defense proteins in fungal pathogenesis. Mol. Plant Pathol., 2007, 8, 677700.
  • 84
    Figueredo, E., Quirce, S., del Amo, A., Cuesta, J., Arrieta, I., Lahoz, C. and Sastre, J., Beer induced anaphylaxis: identification of allergens. Allergy, 1999, 54, 630634.
  • 85
    Finkler, C., Giacomet, C., Muschner, V. C., Salzano, F. M. and Freitas, L. B., Molecular investigations of pathogenesis-related Betv1 homologues in Passiflora (Passifloraceae). Genetica, 2005, 124, 117125.
  • 86
    Finnie, C. and Svensson, B., Feasibility study of a tissue-specific approach to barley proteome analysis: aleurone layer, endosperm, embryo and single seeds. J. Cereal Sci., 2003, 38, 2217227.
  • 87
    Finnie, C. and Svensson, B., Barley seed proteomics from spots to structures. J. Proteomics, 2009, in press.
  • 88
    Finnie, C., Bak-Jensen, S. K., Laugesen, S., Roepstorff, P. and Svensson, B., Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome, Plant Sci., 2006, 170, 808821.
  • 89
    Finnie, C., Maeda, K., Østergaard, O., Bak-Jensen, K. S., Larsen, J. and Svensson, B., Aspects of the barley seed proteome during development and germination. Biochem. Soc. Trans., 2004, 32, 517519.
  • 90
    Finnie, C., Melchior, S., Roepstorff, P. and Svensson, B., Proteome analysis of grain filling and seed maturation in barley. Plant Physiol., 2002, 129, 13081319.
  • 91
    Finnie, C., Ostergaard, O., Bak-Jensen, S., Nielsen, P. K., Bonsager, B., Mori, H., Nohr, J., Juge, N. and Svensson, B., Barley proteome analysis, starch degrading enzymes and proteinaceous inhibitors. J. Appl. Glycosci., 2003, 50, 277282.
  • 92
    Finnie, C., Steenholdt, T., Noguera, Roda O., Knudsen, S., Larsen, J., Brinch-Pedersen, H., Holm, Bach P., Olsen, O. and Svensson, B., Environmental and transgene expression effects on the barley seed proteome. Phytochemistry, 2004, 65, 16191627.
  • 93
    Fiocchetti, F., D'Amore, R., De Palma, M., Bertini, L., Caruso, C., Caporale, C., Testa, A., Cristinzio, G., Saccardo, F. and Tucci, M., Constitutive over-expression of two wheat pathogenesis related genes enhances resistance of tobacco to Phytophthora nicotianae. Plant Cell Tiss. Organ. Cult., 2008, 92, 7384.
  • 94
    Forsyth, J. L., Beaudoin, F., Halford, N. G., Sessions, R. B., Clarke, A. R. and Shewry, P. R., Design, expression and characterisation of lysine-rich forms of the barley seed protein CI-2. Biochim. Biophys. Acta, 2005, 1747, 221227.
  • 95
    Franco, O. L., Rigden, D. J., Melo, F. R. and Grossi-De-Sá, M. F., Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur. J. Biochem., 2002, 269, 397412.
  • 96
    Fu, T. J., Digestion stability as a criterion for protein allergenicity assessment. Ann. NY Acad. Sci., 2002, 964, 99110.
  • 97
    Furtado, A., Henry, R. J., Scott, K. J. and Meech, S. B., The promoter of the asi gene directs expression in the maternal tissue of the seed in transgenic barley. Plant Mol. Biol., 2003, 52, 787799.
  • 98
    Garcia-Casado, G., Crespo, F. J., Rodriguez, J. and Salcedo, G., Isolation and characterization of barley lipid transfer protein and protein Z as beer allergens. J. Allergy Clin. Immun., 2001, 108, 647649.
  • 99
    García-Olmedo, F., Rodríguez-Palenzuela, P., Molina, A., Alamillo, M. J., López-Solanilla, E., Berrocal-Lobo, M. and Poza-Carrión, C., Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett., 2001, 498, 219222.
  • 100
    García-Olmedo, F., Molina, A., Alamillo, M. J. and Rodríguez-Palenzuéla, P., Plant defense peptides. Pept. Sci., 1999, 47, 479491.
  • 101
    Gettins, P. G., Serpin structure, mechanism, and function. Chem. Rev., 2002, 102, 47514804.
  • 102
    Ghosh, M., Antifungal properties of haem peroxidase from Acorus calamus. Ann. Bot., 2006, 98, 11451153.
  • 103
    Gianinazzi, S., Martin, C. and Vallee, J. C. R., Hypersensitivity to viruses, temperature and soluble proteins in Nicotiana Xanthi n.c. Appearance of new macromolecules at the repression of viral synthesis. C R Acad. Sci. Hebd. Seances Acad. Sci. D., 1970, 270, 23832386.
  • 104
    Gilbert, S. M., Burnett, G. R., Mills, E. N., Belton, P. S., Shewry, P. R. and Tatham, A. S., Identification of the wheat seed protein CM3 as a highly active emulsifier using a novel functional screen. J. Agric. Food Chem., 2003, 51, 20192025.
  • 105
    Gomez, L., Allona, I., Casado, R. and Aragoncillo, C., Seed chitinases. Seed Sci. Research, 2002, 12, 217230.
  • 106
    Gorjanović, S., Barley seeds pathogenesis-related (PR) proteins: their importance in beer production, quality and influence on health. In: Beer in Health and Disease Prevention. V. R. Preedy, Ed., Academic Press: San Diego, 2008, pp. 8697.
  • 107
    Gorjanović, S., Barley grain non-specific lipid-transfer proteins (ns-LTPs) in beer production and quality. J. Inst. Brew., 2007, 113, 310324.
  • 108
    Gorjanović, S., Beljanski, M. V. and Sužnjević, D., Electrochemical study of the lipid-transfer protein. Electroanal., 2005, 17, 18611864.
  • 109
    Gorjanović, S., Beljanski, V. M., Gavrović-Jankulović, M., Gojgić-Cvijović, G. and Bejosano, F., Antimicrobial activity of malting barley grain thaumatin-like protein isoforms, S and R. J. Inst. Brew., 2007, 113, 206212.
  • 110
    Gorjanović, S., Spillner, E., Beljanski, M. V., Gorjanović, R., Pavlović, M. and Gojgić-Cvijanović, G., Malting barley grain non-specific lipid-transfer protein (ns-LTP): importance for grain protection. J. Inst. Brew., 2005, 111, 99104.
  • 111
    Gorjanović, S., Sužnjević, D., Beljanski, M., Ostojić S., Gorjanović, R., Vrvić, M. and Hranisavljević, J., Effects of lipid transfer protein from malting barley on brewer's yeast fermentation. J. Inst. Brew., 2004, 110, 297302.
  • 112
    Gorjanović, S., Sužnjević, D., Beljanski, M., Vrvić, M. and Hranisavljević, J., Barley lipid-transfer protein as heavy metal scavenger. Env. Chem. Lett., 2004, 2, 113116.
  • 113
    Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K., Oostendorp, M., Staub, M., Ward, E. and Kessmann H., Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 1996, 8, 629643.
  • 114
    Grönberg, N., Induction of pathogenesis-related genes, PR-17a and N-methyltransferase, in barley infested by the aphid Rhopalosiphum padi, Master's thesis, 2006, Södertörns högskola, University College, Stockholm, Sweden.
  • 115
    Grunwald, I., Rupprecht, I., Schuster, G. and Kloppstech, K., Identification of guttation fluid proteins: the presence of pathogenesis-related proteins in non-infected barley plants, Physiol. Plant, 2003, 119, 192202.
  • 116
    Habib, H. and Fazili, K. M., Plant protease inhibitors: a defense strategy in plants. Biotech. Mol. Biol. R., 2007, 2, 6885.
  • 117
    Haq, S. K., Atif, S. M. and Khan, R. H., Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch. Biochem. Biophys., 2004, 431, 145159.
  • 118
    Hao, J., Li, Q., Dong, J. J., Yu, J. J., Gu, G. X., Fan, W. and Chen, J., Identification of the major proteins in beer foam by mass spectrometry following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Am. Soc. Brew. Chem., 2006, 64, 166174.
  • 119
    Hart, P. J., Monzingo, A. F., Ready, M. P., Ernst, S. R. and Robertus, J. D., The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds to 1.8 A resolution. J. Mol. Biol., 1995, 248, 402413.
  • 120
    Heinemann, B., Andersen, K. V., Nielsen, P. R., Bech, L. M. and Poulsen, F., Structure in solution of a four-helix lipid binding protein. Protein Sci., 1996, 5, 1323.
  • 121
    Hejgaard, J., Origin of a dominant beer protein: immunochemical identity with a β-amylase-associated protein from barley. J. Inst. Brew., 1977, 83, 9496.
  • 122
    Hejgaard, J., Isoelectric focusing of subtilisin inhibitors: Detection and partial characterization of cereal inhibitors of chymotrypsin and microbial proteases. Anal. Biochem., 1981, 15, 444449.
  • 123
    Hejgaard, J., Purification and properties of protein Z-a major albumin of barley endosperm. Physiol. Plant., 1981, 54, 174182.
  • 124
    Hejgaard, J., Inhibitory serpins from rye grain with glutamine as P-1 and P-2 residues in the reactive center. FEBS Lett., 2001, 488, 149153.
  • 125
    Hejgaard, J., Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center. Biol Chem., 2005, 386, 13191323.
  • 126
    Hejgaard, J. and Hauge, S., Serpins of oat (Avena sativa) grain with distinct reactive centres and inhibitory specificity. Physiol. Plant, 2002, 116, 155163.
  • 127
    Hejgaard, J., Jacobsen, S. and Svendsen, I., Two antifungal thaumatin-like proteins from barley grain. FEBS Lett., 1991, 291, 127131.
  • 128
    Hejgaard, J., Jacobsen, S., Bjorn, S. E. and Kragh, K. M., Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett., 1992, 307, 389392.
  • 129
    Hejgaard, J., Svendsen, J. and Mundy, J., Barley α-amylase/subtilisin inhibitor. 2. N-terminal amino acid sequence and homology with inhibitors of the soybean trypsin inhibitor (Kunitz) family. Carlsberg Res. Commun., 1983, 48, 9194.
  • 130
    Henriksen, A., Welinder, K. G. and Gajhede, M., Structure of barley grain peroxidase refined at 1.9 Å resolution. J. Biol. Chem., 1998, 273, 22412248.
  • 131
    Hippeli, S. and Elstner, F. E., Are hydrophobins and/or nonspecific lipid-transfer proteins responsible for gushing in beer? New hypothesis on the chemical nature of gushing inducing factors. Z. Naturforsch., 2002, 57, 18.
  • 132
    Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. and Matsui, H., A large family of class III plant peroxidases. Plant Cell Physiol., 2001, 42, 462468.
  • 133
    Hoffmann-Sommergruber, K., Pathogenesis-related (PR)-proteins identified as allergens, Biochem. Soc. T., 2002, 30, 930935.
  • 134
    Høj, B. P. and Fincher, B. G., Molecular evolution of plant beta glucan endohydrolases. The Plant Journal, 1995, 7, 367379.
  • 135
    Howes, D. B., Schiødt, B. C., Welinder, G. K., Marzocchi, P. M., Ma, J-G., Zhang, J., Shelnutt, A. J. and Smulevich, J., The quantum mixed-spin heme state of barley peroxidase: a paradigm for class III peroxidases. Biophys. J., 1999, 77, 478492.
  • 136
    Hrmova, M. and Fincher, G. B., Structure-function relationships of β-D-glucan endo- and exohydrolases of higher plants. Plant Mol. Biol., 2001, 47, 7391.
  • 137
    Hrmova, M., De Gori, R., Smith, B. J., Fairweather, J. K., Driguez, H., Varghese, J. N. and Fincher, G. B., Structural basis for broad substrate specificity in higher plant beta-D-glucan glucohydrolases. Plant Cell, 2002, 14, 10331052.
  • 138
    Hughes, P., Dennis, E. Whitecross, M., Llewellyn, D. and Gage, P., 2000. The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J. Biol. Chem., 2000, 275, 823827.
  • 139
    Iimure, T., Nankaku, N., Watanabe-Sugimoto, M., Hirota, Naohiko N., Tiansu, Z., Kihara, M., Hayashi, K., Ito, K. and Sato, K., Identification of novel haze-active beer proteins by proteome analysis, J. Cereal Sci., 2009, 49, 141147.
  • 140
    Iimure, T., Takoi, K., Kaneko, T., Kihara, M., Hayashi, M., Ito, M., Sato, K. and Takeda, K., Novel prediction method of beer foam stability using protein Z, barley dimeric α-amylase inhibitor-1 (BDAI-1) and yeast thioredoxin. J. Agric. Food Chem., 2008, 56, 86648671.
  • 141
    ImmunoCAP InVitroSight Home Page. (last accessed November, 2009).
  • 142
    Informall Database Home Page. Communicating about food allergies — information for consumers, regulators and industry. (last accessed November, 2009).
  • 143
    International Union of Immunological Societies Home Page. (last accessed November, 2009).
  • 144
    Jach, G., Gornhardt, B., Mundy, J., Logemarill, J., Pinsdorf, E., Leah, R., Schell, J. and Maas, C., Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J., 1995, 8, 97109.
  • 145
    Jacobsen, S., Mikkelsen, J. D. and Hejgaard, J., Characterization of two antifungal endochitinases from barley grain. Physiol. Plant., 1990, 79, 554562.
  • 146
    Jakobsen mRNA levels in the developing aleurone and starchy endosperm in wild type and a high lysine (lys 3a) mutant of barley. Physiol. Plant., 1991, 83, 201208.
  • 147
    Jakobsen, K., Klemsdal, S. S., Aalen, R. B., Bosnes, M., Alexander, D. and Olsen, O.-A., Barley aleurone cell development: molecular cloning of aleurone-specific cDNAs from immature grains. Plant Mol. Biol., 1989, 12, 285293.
  • 148
    Jang, C. S., Jung, J. H., Yim, W. C., Lee, B. M., Seo, Y. W. and Kim, W., Divergence of genes encoding non-specific lipid transfer proteins in the poaceae family. Mol. Cells., 2007 24, 215223.
  • 149
    Jang, C. S., Yim, W. C., Moon, J. C., Hung, J. H., Lee, T. G., Lim, S. D., Cho, S. H., Lee, K. K., Kim, W., Seo, Y. W. and Lee, B. M., Evolution of non-specific lipid transfer protein (nsLTP) genes in the Poaceae family: their duplication and diversity. Mol. Genet. Genomics. 2008, 279, 481497.
  • 150
    Jayaraj, J. and Punja, Z., Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep., 2007, 26, 15391546.
  • 151
    Jégou, S., Douliez, J-P., Mollé, D., Boivin, P. and Marion, D., Purification and structural characterization of LTP1 polypeptides from beer. J. Agric. Food Chem., 2000, 48, 50235029.
  • 152
    Jegou, S., Douliez, J.-P., Molle, D., Boivin, P. and Marion, D., Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. J. Agric. Food Chem., 2001, 49, 49424949.
  • 153
    Jensen-Jarolim, E., Schmid, B., Bernier, F., Berna, A., Kinaciyan, T., Focke, M., Ebner, C., Scheiner, O. and Boltz-Nitulescu, G., Allergologic exploration of germins and germin-like proteins, a new class of plant allergens. Allergy, 2002, 57, 805810.
  • 154
    Jin, Y-L. R., Speers, Alex A., Paulson, T. A. and Stewart, R. J., Barley beta-glucans and their degradation during malting and brewing. Tech. Q. Master Brew. Assoc. Am., 2004, 41, 231240.
  • 155
    Johansson, A., Rasmussen, S. K., Harthill, J. E. and Welinder, K. G., DNA, amino acid and carbohydrate sequence of barley seed — specific peroxidase BP 1. Plant Mol. Biol., 1992, 18, 11511161.
  • 156
    Johnson, K., Kim, E., Teeter, M., Suh, S. and Stec, B. Crystal structure of α-hordothionin at 1.9A resolution. FEBS Letters, 2005, 579, 23012306.
  • 157
    Jones, L. B., Endoproteases of barley and malt. J. Cereal Sci., 2005.
  • 158
    Jones, L. B., The endogenous endoprotease inhibitors of barley and malt and their roles in malting and brewing. J. Cereal Sci., 2005, 42, 32713280.
  • 159
    Jones, L. B. and Fontanini, D., Trypsin/alpha-amylase inhibitors inactivate the endogenous barley/malt serine endoproteinase SEP-1 J. Agric. Food Chem., 2003, 51, 58035814.
  • 160
    Jones, L. B. and Marinac, A. L., Purification, identification and partial characterization of a barley protein that inhibits green malt endoproteinases. J. Am. Soc. Brew. Chem., 1997, 55, 5864.
  • 161
    Jones, L. B. and Marinac, A. L., Purification and partial characterization of a second cysteine proteinase inhibitor from ungerminated barley (Hordeum vulgare L.). J. Agric. Food Chem., 2000, 48, 257264.
  • 162
    Juge, N. and Svensson, B., Proteinaceous inhibitors of carbohydrate-active enzymes in cereals: implication in agriculture, cereal processing and nutrition. J. Sci. Food Agric., 2006, 86, 15731586.
  • 163
    Jung, W. H., Kim, W. and Hwang, K. B., Three pathogen-inducible genes encoding lipid-transfer protein from pepper are differentially activated by pathogens, abiotic and environmental stresses. Plant Cell Environ., 2003, 26, 915928.
  • 164
    Jwa, N-S., Agrawal, G. K., Tamogami, S., Yonekura, M., Han, O., Iwahashi, H. and Rakwal, R., Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol. Biochem., 2006, 44, 261273.2.
  • 165
    Kader, J. C., Lipid transfer proteins in plants. Annu. Rev. Plant Physiol. Mol. Biol., 1996, 47, 627654.
  • 166
    Kader, J. C., Lipid-transfer proteins: A puzzling family of plant proteins. Trends Plant Sci., 1997, 2, 6670.
  • 167
    Kalla, R., Shimamoto, K., Potter, R., Nielsen, S., Linnestad, C. and Olsen, A., The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J., 1994, 6, 849860.
  • 168
    Kasprzewska, A., Plant chitinases-regulation and function. Cell Mol. Biol. Lett., 2003, 8, 809824.
  • 169
    Kaur, M., Gibson, C. E., Stewart, D. C., Bowman, J. P. and Evans, D. E., Assuring the microbial safety and quality of Australian malt and barley, proceedings of the 12th Australian barley technical symposium, 2005, 1114 Sep., Hobart, Tasmania.
  • 170
    Keates, E. S., Kostman, A. T., Anderson, D. J. and Bailey, A. B., Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiol., 2003, 132, 16101622.
  • 171
    Kielbowicz-Matuk, A., Rey, P. and Rorat, T., The organ-dependent abundance of a Solanum lipid transfer protein is up-regulated upon osmotic constraints and associated with cold acclimation ability. J. Exp. Bot., 2008, 59, 21912203.
  • 172
    Kirubakaran, S. I. and Sakthivel, N., Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expr. Purif., 2007, 52, 11591166.
  • 173
    Kontogiorgos, V., Regand, A., Yada, R. Y. and Goff, H. D., Isolation and characterization of ice structuring proteins from cold-acclimated winter wheat grass extract for recrystallization inhibition in frozen foods. J. Food Biochem., 2007, 31, 139160.
  • 174
    Ladics, S. G. and Selgrade, M-J. K., Identifying food proteins with allergenic potential: Evolution of approaches to safety assessment and research to provide additional tools. Regul. Toxicol. Pharm., 2009, 54, S2S6.
  • 175
    Ladogina, M. P., Variants of trypsin inhibitors in cultivated and wild barley and analysis of their antitrypsin. Activity. J. Cereal Sci., 1997, 26, 265270.
  • 176
    Lane, B. G., Oxalate, germins, and higher-plant pathogens. IUBMB Life, 2002, 53, 6775.
  • 177
    Laugesen, S., Bak-Jensen, S. K., Hägglund, P., Henriksen, A., Finnie, C., Svensson, B. and Roepstorff, P., Barley peroxidase isozymes: Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Int. J. Mass Spectrom., 2007, 244253.
  • 178
    Lawrence, P. K. and Koundal, K. R., Plant protease inhibitors in control of phytophagous insects. Electr. J. Biotech., 2002, 5, 117.
  • 179
    Lay, F. T. and Anderson, M. A., Defensins-components of the innate immune system in plants Curr. Prot. Pept. Sci., 2005, 6, 85101.
  • 180
    Leah, R. and Mundy, J., The bifunctional α-amylase/subtilisin inhibitor of barley: nucleotidesequence and patterns of seed-specific expression Plant Mol. Biol., 1989, 12, 673682.
  • 181
    Leah, R., Tommerup, H., Svendsen, I. and Mundy, J., Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem., 1991, 266, 15641573.
  • 182
    Leubner-Metzger, G., Functions and regulation of α-1,3-glucanases during seed germination, dormancy release and after-ripening, Seed Sci. Res., 2003, 13, 1734.
  • 183
    Leubner-Metzger, G., β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J., 2005, 41, 133145.
  • 184
    Leubner-Metzger, G. and Meins, F. Jr., Functions and regulation of plant β-1,3-glucanases (PR-2). In: Pathogenesis-related proteins in plants. S. K. Datta and S. Muthukrishnan, Eds., CRC Press LLC: Boca Raton, 1999, pp. 4976.
  • 185
    Liljeroth, E., Marttila, S. and von Bothmer, R., Immunolocalization of defence-related proteins in the floral organs of barley (Hordeum vulgare L.). J. Phytopath., 2005, 153, 702709.
  • 186
    Liljeroth, E., Santén, K., and Bryngelsson, T., PR protein accumulation in seminal roots of barley and wheat in response to fungal infection — the importance of cortex senescence. J. Phytopath., 2001, 149, 447456.
  • 187
    Lindorff-Larsen, K. and Winther, R. J., Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett., 2001, 488, 145148.
  • 188
    Lindorff-Larsen, K., Lerche, M. H., Poulsen, F. M., Roepstorff, P. and Winther, J. R., Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification. J. Biol. Chem., 2001, 276, 3354733553.
  • 189
    Lintle, M. and van der Westhuizen, A. J., Glycoproteins from Russian wheat aphid infested wheat induce defence responses. Z. Naturforsch [C], 2002, 57, 867873.
  • 190
    Liu, J. and Ekramoddoullah, A., The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiol. Mol. Plant Pathol., 2006, 68, 313.
  • 191
    Liu, Q. and Xue, Q., Computational Identification of novel PR-1-type Genes in Oryza sativa, J. Genet., 2006, 85, 193198.
  • 192
    Liu, Y-J., Cheng, C-S., Lai, S-M., Hsu, M-P., Chen, C-S. and Lyu, P-C., Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins, 2006, 63, 777786.
  • 193
    Liu, Y.-J., Samuel, P., Lin, C.-H. and Lyu, P.-C., Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa). Biochem. Bioph. Res. Co., 2002, 294, 535540.
  • 194
    van Loon, L. C. and van Kammen, A., Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 1970, 40, 199211.
  • 195
    van Loon, L. C. and van Strien, E. A., The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 types proteins. Phys. Mol. Plant Path., 1999, 55, 8597.
  • 196
    van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V., Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep., 1994, 12, 245264.
  • 197
    van Loon, L. C., Rep, M. and Pieterse, C. M. J., Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopath., 2006, 44, 135162.
  • 198
    De Lucca, A. J., Cleveland, T. E. and Wedge, D. E., Plant-derived antifungal proteins and peptides. Can. J. Microbiol., 2005, 51, 10011014.
  • 199
    Ludvigsen, S. and Poulsen, F. M., Secondary structure in solution of barwin from barley seed using 1H nuclear magnetic resonance spectroscopy. Biochemistry, 1992, 31, 87718782.
  • 200
    Ludvigsen, S. and Poulsen, F. M., Three-dimensional structure in solution of barwin, a protein from barley seed. Biochemistry, 1992, 31, 87838789.
  • 201
    Ludvigsen, S., Shen, H. Y., Kjaer, M., Madsen, J. C. and Poulsen, F. M., Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals. J. Mol. Biol., 1991, 222, 621635.
  • 202
    Maeda, K., Finnie, C. and Svensson, B., Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms. Biochem J., 2004, 378, 497507.
  • 203
    Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K., A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419, 399403.
  • 204
    Mancinelli, L., Panara, F., Rutili, D., Maras, B. and Gianfranceschi, G. L., The CM2 and CM3 types of α-amylase inhibitor are associated with Triticum aestivum seed chromatin. Plant Physiol. Biochem., 2003, 41, 705710.
  • 205
    Manners, M. J., Hidden weapons of microbial destruction in plant genomes. Genome Biology, 2007, 8, Article 225.
  • 206
    March, J. T., Able, A. J., Schultz, J. C. and Able, J. A., A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains. Proteomics, 2007, 7, 38003808.
  • 207
    Marion, D., Bakan B. and Elmorjani K., Plant lipid binding proteins: properties and applications. Biotechnol Adv., 2007, 25, 195197.
  • 208
    Marion, D., Douliez, J-P., Gautier, M-F. and Elmorjani, E., Plant lipid transfer proteins: relationships between allergenicity and structural, biological and technological properties. In: Plant Food Allergens. E. N. Clare Mills and P. R. Shewry, Eds., Blackwell Publishing: Oxford, 2004, pp. 5769.
  • 209
    Marzban, G., Herndl, A., Pietrozotto, S., Banerjee, S., Obinger, C., Maghuly, F., Hahn, R., Boscia, D., Katinger, H. and Laimer, L., Conformational changes of Mal d 2, a thaumatin-like apple allergen, induced by food processing. Food Chem., 8034811.
  • 210
    Mathre, D. E., Compendium of barley diseases. 2nd Edition. The American Phytopathological Society: St. Paul, Minnesota, United States, 1997.
  • 211
    M'barek, B. N., Hatem, C-M., Raoudha, A. and Leila, B-K., Relationship between peroxidase activity and salt tolerance during barley seed germination. J. Agron., 2007, 6, 433438.
  • 212
    Mchedlishvili, N., Omiadze, N., Gulua, L., Sadunishvili, T., Zamtaradze, R., Abutidze, M., Bendeliani, E. and Kvesitadze, G., Thermostabilities of plant phenol oxidase and peroxidase determining the technology of their use in the food industry. Appl. Biochem. Microbiol., 2005, 41, 165170.
  • 213
    McPhalen, C. A., Svendsen, I., Jonassen, I. and James, M. N. G., Crystal and molecular structure of chymotrypsin inhibitor 2 from barley seeds in complex with subtilisin Novo. Proc. Nat. Acad. Sci. USA., 1985, 82, 72427246.
  • 214
    Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G. G. and Mendez, R., Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Eur. J. Biochem., 1990, 194, 535539.
  • 215
    Menu-Bouaouiche, L., Vriet, C., Peumans, W. J., Barre, A., van Damme, E. J. M. and Rouge, P., A molecular basis for the endo-β-1,3-glucanase activity of the thaumatin-like proteins from edible fruits. Biochimie, 2003, 85, 123131.
  • 216
    Micheelsen, P. O., Østergaard, P. R., Lange, L. and Skjøt, M., High-level expression of the native barley α-amylase/subtilisin inhibitor in Pichia pastoris. J. Biotechnol., 2008, 29, 424432.
  • 217
    Micheelsen, P. O., Vévodová, J., De Maria, L., Østergaard, P. R., Friis, P. E., Wilson, K. and Skjøt, M., Structural and mutational analyses of the interaction between the barley α amylase/subtilisin inhibitor and the subtilisin savinase reveal a novel mode of inhibition. J. Mol. Biol., 2008, 380, 46814690.
  • 218
    Mikola, J. and Suolinna, E.-M., Purification and properties of a trypsin inhibitor from barley. European J. Biochem., 1969, 9, 655560.
  • 219
    Mohammadi, M. and Kazemi, H., Changes in peroxidase and polyphenol activity in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci., 2002, 162, 491498.
  • 220
    Molina, A., Segura, A. and Garcia-Olmedo, F., Lipid transfer proteins (ns-LTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett., 1993, 316, 119122.
  • 221
    Monnet, F.-P, Dieryck, W., Boutrot, F., Joudrier, P. and Gautier, M.-F., Purification, characterization and cDNA cloning of a type 2 (7 kDa) lipid transfer protein from Triticum durum. Plant Sci., 2001, 161, 747755.
  • 222
    Montesinos, E., Antimicrobial peptides and plant disease control, FEMS Microbiol. Lett., 2007, 270, 111.
  • 223
    Moralejo, M. A., García-Casado, G., Sánchez-Monge, R., Lopez-Otín, C., Romagosa, I., Molina-Cano, L. J. and Salcedo, G., Genetic variants of the trypsin inhibitor from barley endosperm show different inhibitory activities. Plant Sci., 1993, 89, 2329.
  • 224
    Mosolov, V. V. and Valueva, T. A., Proteinase inhibitors and their function in plants: a review. Appl. Biochem. Microbiol. (Prikl Biokhim Mikrobiol.), 2005, 41, 261282.
  • 225
    Mosolov, V. V. and Valueva, T. A., Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms. Biochemistry (Moscow), 2006, 71, 838845.
  • 226
    Mosolov, V. V. and Valueva, T. A., Proteinase inhibitors in plant biotechnology: a review. Appl. Biochem. Microbiol. (Prikl Biokhim Mikrobiol.), 2008, 44, 233240.
  • 227
    Mosolov, V. V., Grigor'eva, L. I. and Valueva, T. A., Plant proteinase inhibitors as multifunctional proteins (Review). Appl. Biochem. Microbiol. (Prikl Biokhim Mikrobiol.), 2001, 37, 545551.
  • 228
    Mundy, J., Svendsen, I. B. and Hejgaard, J., Barley α-amylase/subtilisin inhibitor. I. Isolation and characterization. Carlsberg Res. Commun., 1983, 48, 8190.
  • 229
    Murad, M. A., Pelegrini, B. P., Neto, M. S. and Franco, L. O., Novel findings of defensins and their utilization in construction of transgenic plants. Transgenic Plant J., 2007, 1, 3948.
  • 230
    Muthukrishnan, S., Liang, H. G., Trick, N. H. and Gill, S. B., Pathogenesis-related proteins and their genes in cereals. Plant Cell Tiss. Org., 2001, 64, 93114.
  • 231
    Ng, T. B., Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides, 2004, 25, 12151222.
  • 232
    Nielsen, P. K., Bønsager, B. C., Fukuda, K. and Svensson, B., Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering. Biochim. Biophys. Acta, 2004, 12, 157164.
  • 233
    van Nierop, S. N. E., Axcell, B. C., Cantrell, I. C. and Rautenbach, M., Optimized quantification of the antiyeast activity of different barley malts towards a lager brewing yeast strain. Food Microbiol., 2008, 25, 895901.
  • 234
    van Nierop, S. N. E., Evans, E. D., Axcell, C. B. and Cantrell, C. I., Studies on beer foam proteins in a commercial brewing process. Proceedings of the Institute and Guild of Brewing-Asia Pacific Section, 2002, pp. 16.
  • 235
    van Nierop, S. N. E., Evans, E. D., Axcell, C. B., Cantrell, C. I. and Rautenbach, M., Impact of different wort boiling temperatures on the beer foam stabilizing properties of lipid transfer protein 1. J. Agric. Food. Chem., 2004, 52, 31203129.
  • 236
    van Nierop, S. N. E., Rautenbach, M., Axcell, B. C. and Cantrell, I. C., The impact of microorganisms on barley and malt quality. J. Am. Soc. Brew. Chem., 2006, 62, 6978.
  • 237
    Noots, I., Delcour, A. J. and Michiels, W. C., From field barley to malt: detection and specification of microbial activity for quality aspects. Crit. Rev. Microbiol., 1999, 25, 121153.
  • 238
    Oda, Y., Matsunaga, T., Fukuyama, K., Miyazaki, T. and Morimoto, T., Tertiary and quaternary structures of 0.19 α-amylase inhibitor from wheat kernel determined by X-ray analysis at 2.06 A resolution. Biochemistry, 1997, 36, 1350313511.
  • 239
    Odjakova, M. and Hadjiivanova, C., The complexity of pathogens defense in plants, Bulg. J. Plant. Physiol., 2001, 27, 101109.
  • 240
    Ohnishi, T., Juffer, A. H., Tamoi, M., Skriver, K. and Fukamizo, T., 26 kDa Endochitinase from barley seeds: an interaction of the ionizable side chains essential for catalysis. J. Biochem., 2005, 138, 553562.
  • 241
    Oita, S., Synergistic bactericidal effect of α-purothionin and chelating agents for Gram-negative food-poisoning bacteria. Bull. Natl. Agric. Res. Cent. West. Reg., 2003, 2, 5965.
  • 242
    Oita, S., Ohnishi-Kameyama, M. and Nagata T., Binding of barley and wheat alpha-thionins to polysaccharides. Biosci. Biotechnol. Biochem., 2000, 64, 95864.
  • 243
    Okada, Y., Iimure, T., Takoi, K., Kaneko, T., Klhara, I., Hayashi, K., Ito, K., Sato, K. and Takeda, K., The influence of barley malt protein modification on beer foam stability and their relationship to the barley dimeric α-amylase inhibitor-I (BDAI-I) as a possible foam-promoting protein. J. Agri. Food Chem., 2008, 56, 14581464.
  • 244
    Oneda, H., Lee, S. and Inouye, K., Inhibitory effect of 0.19 α-amylase inhibitor from wheat kernel on the activity of porcine pancreas α-amylase and its thermal stability. J. Biochem., 2004, 135, 421427.
  • 245
    Osmond, R. I. W., Hrmova, M., Fontaine, F., Imberty, A. and Fincher, G. B., Binding interactions between barley thaumatin like proteins and (1,3)-β-glucans. Eur. J. Biochem., 2001, 268, 41904199.
  • 246
    Ostergaard, H., Rasmussen, S. K., Roberts, T. H. and Hejgaard, J., Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins — cloning and characterization of five major molecular forms. J. Biol. Chem., 2000, 275, 3327233279.
  • 247
    Ostergaard, O., Finnie, C., Laugesen, S., Roepstorff, P. and Svensson, B., Proteome analysis of barley seeds: Identification of major proteins from two-dimensional gels (pI 4–7). Proteomics, 2004, 4, 24372447.
  • 248
    Ostergaard, O., Melchior, S., Roepstorff, P. and Svensson, B., Initial proteome analysis of mature barley seeds and malt. Proteomics, 2002, 2, 733739.
  • 249
    Palacin, A., Quirce, S., Armentia, A., Fernández-Nieto, M., Pacios, L. F., Asensio, T., Sastre, J., Diaz-Perales, A. and Salcedo, G., Wheat lipid transfer protein is a major allergen associated with baker's asthma. J. Allergy Clin. Immunol., 2007, 120, 11321138.
  • 250
    Park, Y. E., Kim, J-A., Kim, H-W., Kim, S. Y. and Song, K. H., Crystal structure of the Bowman-Birk inhibitor from barley seeds in ternary complex with porcine trypsin. J. Mol. Biol., 2004, 343, 173186.
  • 251
    Pastorello, E. A., Farioli, L., Conti, A., Pravettoni, V., Bonomi, S., Iametti, S., Fortunato, D., Scibilia, J., Bindslev-Jensen, C., Ballmer-Weber, B., Robino, A. M. and Ortolani, C., Wheat IgE-mediated food allergy in european patients: α-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Int. Arch. Allergy Immunol., 2007, 144, 1022.
  • 252
    Pastorello, E. A., Farioli, L., Pravettoni, V., Ortolani, C., Fortunato, D. and Giuffrida, M. G., Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin. J. Allergy Clin. Immun., 2003, 111, 350359.
  • 253
    Patnaik, D. and Khurana, P., Germins and germin like proteins: an overview. Indian J. Exp. Biol., 2001, 39, 191200.
  • 254
    Payan, F., Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors. Biochim. Biophys. Acta, 2004, 1696, 171180.
  • 255
    Pekkarinen, A. and Jones, L. B., Purification and identification of barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of Fusarium culmorum. J. Agri. Food Chem., 2003, 51, 17101717.
  • 256
    Pekkarinen, A., Longstaff, C. and Jones, B. L., Kinetics of the inhibition of fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. J. Agric. Food Chem., 2007, 55, 27362742.
  • 257
    Pekkarinen, A., Sarlin, H. T., Laitila, T. A., Haikara, I. A. and Jones, L. B., Fusarium species synthesize alkaline proteinases in infested barley. J. Cereal Sci., 2003, 37, 3349356.
  • 258
    Pelegrini, B. P. and Franco, L. O., Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int. J. Biochem. Cell B., 2005, 37, 22392253.
  • 259
    Perrocheau, L., Bakan, B., Boivin, P. and Marion, D., Stability of barley and malt lipid transfer protein 1 (LTP1) toward heating and reducing agents: relationships with the brewing process. J. Agric. Food Chem., 2006, 54, 31083113.
  • 260
    Perrocheau, L., Rogniaux, H., Boivin, P. and Marion, D., Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics, 2005, 5, 28492858.
  • 261
    PLANT-PIs database Home Page. (last accessed November, 2009).
  • 262
    Pons, J.-L., de Lamotte, F., Gautier, M.-F. and Delsuc, M.-A., Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. J. Biol. Chem., 2003, 278, 1424914256.
  • 263
    Ponz, F., Paz-Ares, J., Hernandez-Lucas, C., Carbonero, P. and Garcia-Olmedo, F., Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J., 1983, 2, 10351040.
  • 264
    Ponz, F., Paz-Ares, J., Hernandez-Lucas, C., Garcia-Olmedo, F. and Carbonero, P., Cloning and nucleotide sequence of a cDNA encoding the precursor of the barley toxin α-hordothionin. Eur. J. Biochem., 1986, 156, 131135.
  • 265
    Portieles, R., Ayra, C. and Borrás, O., Basic insight on plant defensins. Biotecnología Aplicada, 2006, 23, 7578.
  • 266
    Qi, R-F., Song, Z-W., Chi, C-W., Structural Features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochim. Biophys. Sinica, 2005, 37, 283292.
  • 267
    Qu, L-J., Chen, J., Liu, M., Pan, N., Okamoto, H., Lin, Z., Li, C., Li, D., Wang, J., Zhu, G., Zhao, X., Chen, X., Gu, H. and Chen, Z., Molecular cloning and functional analysis of a novel type of bowman-birk inhibitor gene family in rice. Plant Physiol., 2003, 133, 560570.
  • 268
    Radhajeyalakshmi, R., Yamunarani, K., Seetharaman, K. and Velazhahan, R., Existence of thaumatin-like proteins (TLPs) in seeds of cereals. Acta Phytopathol. Entomol. Hung., 2003, 38, 251257.
  • 269
    Radisky, E. S., Lu, C. J., Kwan, G. and Koshlan, D. E. Role of the intramolecular hydrogen bond network in the inhibitory power of chymotrypsin inhibitor 2. Biochemistry, 2005, 44, 68236830.
  • 270
    Rasmussen, C. B., Bakovic, M., Welinder, K. G. and Dunford, H. B., Unique reaction of a barley peroxidase with hydrogen peroxidase. FEBS Lett., 1993, 321, 102105.
  • 271
    Rasmussen, C. B., Henriksen, A., Abelskov, A. K., Jensen, B. R., Rasmussen, K. S., Hejgaard, J. and Welinder, G. K., Purification, characterization and stability of barley grain peroxidase BP 1, a new type of plant peroxidase. Physiol. Plant., 1997, 100, 102110.
  • 272
    Rasmussen, C. B., Hiner, A. N. P., Smith, A. T. and Welinder, K. G., Effect of calcium, other ions, and pH on the reactions of barley peroxidase with hydrogen peroxide and fluoride. J. Biol. Chem., 1998, 273, 22322240.
  • 273
    Rasmussen, U., Munck, L., and Ullrich, S. E., Immunogold localization of chymotrypsin inhibitor-2, a lysine-rich protein, in developing barley endosperm. Planta, 1990, 180, 272277.
  • 274
    Rimsten, L., Extractable cell-wall polysaccharides in cereals, with emphasis on β-glucan in steeped and germinated barley. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2003.
  • 275
    Regente, M. C., Giudici, A. M., Villalain, J. and de la Canal, L., The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microb., 2005, 40, 183189.
  • 276
    Reimann-Philipp, U., Schrader, G., Martinoia, E., Barkholt, V. and Apel, K., Intracellular thionins of barley — a second group of leaf thionins closely related to but distinct from cell wall-bound thionins. J. Biol. Chem., 1989, 264, 89788984.
  • 277
    Reiss, E. and Horstmann, C., Drechslera teres infected barley (Hordeum vulgare L.) leaves accumulate eight isoforms of thaumatin-like proteins. Physiol. Mol. Plant Pathol., 2001, 58, 183188.
  • 278
    Reiss, E., Schlesier, B. and Brandt, W., cDNA sequences, MALDI-TOF analyses, and molecular modelling of barley PR-5 proteins. Phytochemistry, 2006, 67, 18561864.
  • 279
    Richard, C., Leduc, V. and Battais, F., Plant lipid transfer proteins (LTPS): biochemical aspect in panallergen-structural and functional features, and allergenicity. Eur. Ann. Allergy Clin. Immunol., 2007, 39, 7684.
  • 280
    Roberti, R., Veronesi, A. R., Cesari, A., Cascone, A., Di Berardino, I., Bertini, L. and Caruso, C., Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum. Plant Sci., 2008, 175, 33393347.
  • 281
    Roberts, H. T. and Hejgaard, J., Serpins in plants and green algae. Funct. Integr. Genomics, 2008, 8, 127.
  • 282
    Roberts, H. T., Marttila, S., Rasmussen, K. S. and Hejgaard, J., Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley. J. Exp. Bot., 2003, 54, 22512263.
  • 283
    Roberts, R. L. and Selitrennikoff, C. P., Isolation and partial characterization of two antifungal proteins from barley. Biochim. Biophys. Acta., 1986, 880, 161170.
  • 284
    Robinson, L. H., Evans, D. E., Kaukovirta-Norja, A., Vilpola, A., Aldred, P. and Home, S., The interaction between malt protein quality and brewing conditions and their impact on beer colloidal stability. Tech. Q. Master Brew. Assoc. Am., 2004, 41, 353362.
  • 285
    Robinson, L. H., Healy, P., Steward, D. C., Eglington, J. K., Ford, C. M. and Evans, D. E., The identification of a barley haze active protein that influences beer haze stability: The genetic basis of a barley malt haze active protein. J. Cereal Sci., 2007, 45, 335342.
  • 286
    Robinson, L. H., Juttner, J., Milligan, A., Lahnstein, J., Eglinton, J. K. and Evans, D. E., The identification of a barley haze active protein that influences beer haze stability: Cloning and characterisation of the barley SE protein as a barley trypsin inhibitor of the chloroform/methanol type. J. Cereal Sci., 2007, 45, 343352.
  • 287
    Rodriguez-Palenzuela, P., Puitor-Toro, J-A., Carbonero, P. and Garcia-Olmedo, F., Nucleotide sequence and endosperm specific expression of the structural gene for the toxin α-hordothionin barley (Hordeum vulgare L.). Gene, 1988, 70, 271281.
  • 288
    Roesler, K. R. and Rao, A. G., Conformation and stability of barley chymotrypsin inhibitor 2 (CI-2) mutants containing multiple lysine substitutions, Protein Eng., 1999, 12, 967973.
  • 289
    Roesler, K. R. and Rao, A. G., A single disulfide bond restores thermodynamic and proteolytic stability to an extensively mutated protein Protein Sci., 2000, 9, 16421650.
  • 290
    Salcedo, G., Sánchez-Monge, R., Barber, D. and Díaz-Perales, A., Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim. Biophys. Acta., 2007, 1771, 781791.
  • 291
    Salt, J. L., Robertson, A. J., Jenkins, J. A., Mulholland, F. and Mills, E. N. C., The identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough Proteomics, 2005, 5, 16121623.
  • 292
    Sanchez-Monge, R., Garcia-Casado, G., Lopez-Otin, C., Armentia, A. and Salcedo, G., Wheat flour peroxidase is a prominent allergen associated with baker's asthma. Clin. Exp. Allergy, 1997, 27, 11301137.
  • 293
    Sanchez-Monge, R., Gomez, L., Barber, D., Lopez-Otin, C., Armentia, A. and Salcedo, G., Wheat and barley allergens associated with baker's asthma. Glycosylated subunits of the alpha-amylase-inhibitor family have enhanced IgE-binding capacity. Biochem J., 1992, 281, 401405.
  • 294
    Santén, K., Pathogenesis-related proteins in barley. Localization and accumulation patterns in response to infection by Bipolaris sorokiniana. PhD Thesis, 2007, Acta Universitatis agriculturae Sueciae, ISSN 1652-6880, ISBN 978-91-576-7385-5.
  • 295
    Santén, K., Marttila, S., Liljeroth, E., and Bryngelsson, T., Immunocytochemical localization of the pathogenesis-related PR-1 protein in barley leaves after infection by Bipolaris sorokiniana. Physiol. Mol. Plant Path., 2005, 66, 4554.
  • 296
    Samuel, D., Liu, Y.-J., Cheng, C.-S. and Lyu, P.-C., Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J. Biol. Chem., 2002, 277, 3526735273.
  • 297
    Sathe, K. S., Kshirsagar, H. H. and Kenneth, H. R., Advances in seed protein research: a perspective on seed allergens. J. Food Sci., 2005, 70, 93119.
  • 298
    Schimoler-O'Rourke, R., Richardson, M. and Selitrennikoff, P. C., Zeamatin inhibits trypsin and α-amylase activities. Appl. Environ. Microbiol., 2001, 67, 23652366.
  • 299
    Schwarz, P. B., Casper, H. H., Barr, J. and Musial, M., Impact of Fusarium head blight on the malting and brewing quality of barley. Cereal Res. Commun., 1997, 25, 813814.
  • 300
    Schwarz, P. B., Schwarz, J. G., Zhou, A., Prom, L. K. and Steffenson, B. J., Effect of Fusarium graminearum and F. poae infection on barley and malt quality. Monatsschr. Brauwiss., 2001, 54, 5563.
  • 301
    Scottish Crop Research Institute Home Page. (last accessed November, 2009).
  • 302
    Sels, J., Mathys, J., De Coninck, B. M. A., Cammue, B. P. A. and De Bolle, M. F. C., Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem., 2008, 94111950.
  • 303
    Shan, L., Li, C., Chen, F., Zhao, C. and Xia, G., A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell. Environ., 2008, 31, 11281137.
  • 304
    Shewry, P. R., Barley seed proteins. In: Barley Chemistry and Technology A. W. MacGregor and R. S. Bhatty, Eds., AACC: St. Paul, 1993, pp. 355417.
  • 305
    Shewry, P. R., Enzyme inhibitors of seeds: Types and properties. In: Seed proteins. P. R. Shewry and R. Casey, Eds., Kluwer Academic Publishers: Dordrecht, 1999, pp. 587615.
  • 306
    Shin, S., Mackintosh, C. A., Lewis, J., Heinen, S. J., Radmer, L., Dill-Macky, R., Baldridge, G. D., Zeyen, R. J. and Muehlbauer, G. J., Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J. Exp. Bot., 2008, 59, 23712378.
  • 307
    Simmons, C. R., Plant 1,3-β-D-glucanases and 1,3;1,4-β-D-glucanases. Crit. Rev. Plant Sci. Mol. Biol., 1994, 13, 325387.
  • 308
    Skadsen, R. W., Sathish, P. and Kaeppler, H. F., Expression of thaumatin-like permatin PR-5 genes switches from the ovary wall to the aleurone in developing barley and oat seeds. Plant Sci., 2000, 156, 1122.
  • 309
    Skriver, K., Leah, R., Müller-Uri, F., Olsen, F. L. and Mundy, J., Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol. Biol., 1992, 18, 585589.
  • 310
    Skylas, D. J., Van Dyk, D. and Wrigley, C. W., Proteomics of wheat grain. J. Cereal Sci., 2005, 41, 165179.
  • 311
    Song, K. H. and Song, W.S., Refined structure of the chitinase from barley seeds at 2.0 Å resolution. Acta Cryst., 1996, D52, 289298.
  • 312
    Song, K. H., Kim, S. Y., Yang, K. Y., Moon, J., Lee, Y. J. and Suh, W. S., Crystal structure of a 16 kda double-headed bow-man-birk trypsin inhibitor from barley seeds at 1.9 Å resolution. J. Mol. Biol., 1999, 293, 11331144.
  • 313
    Sørensen, H. P., Madsen, L. S., Petersen, J., Andersen, J. T., Hansen, A. M. and Beck, H. C., Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase. Appl. Biochem. Biotechnol., 2009 DOI 10.1007/s12010-009-8557-4.
  • 314
    Šotkovský, P., Hubálek, M., Hernychová, L., Novák, P., Havranová, M., Šetinová, I., Kitanovičová, A., Fuchs, M., Stulík, J. and Tučková, L., Proteomic analysis of wheat proteins recognized by IgE antibodies of allergic patients, Proteomics, 2008, 8, 16771691.
  • 315
    Spelbrink, G. R., Dilmac, N., Allen, A., Smith, J. T., Shah, M. D. and Hockerman, H. G., Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol., 2004, 135, 20552067.
  • 316
    Stec B., Plant thionins — the structural perspective. Cell. Mol. Life Sci., 2006, 63, 13701385.
  • 317
    Stec, B., Markman, O., Rao, U., Heffron, G., Henderson, S., Vernon, L. P., Brumfeld, V. and Teeter, M. M., Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins. J. Pep. Res., 2004, 64, 210224.
  • 318
    Sterk, P., Booij, H., Schellekens, van Kammen, A. and de Vries, S. C., Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3, 907921.
  • 319
    Stewart, J. R., Jose, N. Varghese, N. J., Garrett, P. J. T., Høj, B. P. and Fincher, B. G., Mutant barley (1[RIGHTWARDS ARROW]3,1[RIGHTWARDS ARROW]4)-β-glucan endohydrolases with enhanced thermostability. Protein Eng., 2001, 14, 245253.
  • 320
    Stewart, J. R., Increasing the thermostability of barley (1[RIGHTWARDS ARROW]3,1[RIGHTWARDS ARROW]4)-β-glucanase. PhD thesis, 1999, The University of Adelaide, Australia (
  • 321
    Stintzi, A., Heitz, T., Prasad, V., Wiedemenn-Merinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M. and Fritig, B., Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie, 1993, 75, 687706.
  • 322
    Stirpe, F., Ribosome-inactivating proteins. Toxicon, 2004, 44, 371383.
  • 323
    Stirpe, F. and Battelli, G. M., Ribosome-inactivating proteins: progress and problems Cell. Mol. Life Sci., 2006, 63, 18501866.
  • 324
    Svendsen, I., Boisen, S. and Hejgaard, J., Amino acid sequence of serine protease inhibitor CI-1 from barley. Homology with barley inhibitor CI-2, potato inhibitor I, and leech eglin. Carlsberg Res. Commun., 1982, 47, 4553.
  • 325
    Svensson, G. B., Asano, K., Jonassen, I., Poulsen, F. M., Mundy, J. and Svendsen, I. A., A 10 kDa barley seed protein homologous with an α -amylase inhibitor of Indian finger millet. Carlsberg Res. Commun., 1986, 51, 493500.
  • 326
    Svensson, B., Fukuda, K., Nielsen, P. K. and Bønsager, B. C., Proteinaceous alpha-amylase inhibitors. Biochim. Biophys. Acta, 2004, 1696, 145156.
  • 327
    Svensson, B., Svendsen, I., Højrup, P., Roepstorff, P., Ludvigsen, S. and Poulsen, F. M., Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry, 1992, 31, 87678770.
  • 328
    Anuradha, Swathi T., Divya, K., Jami, S. K. and Kirti, P. B., Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep., 2008, 27, 17771786.
  • 329
    Swegle, M., Kramer, K. and Muthukrishnan, S., Properties of barley seed chitinases and release of embryo-associated isoforms during early stages of imbibition. Plant Physiol., 1992, 99, 10091014.
  • 330
    Sy, D., Le Gravier, Y., Goodfellow, J. and Vovelle, F., Protein stability and plasticity of the hydrophobic cavity in wheat ns-LTP. J. Biomol. Struct. Dynam., 2003, 21, 1528.
  • 331
    Tamas, L., Durčekova, K., Huttova, J. and Mistrik, I., Expression of defence-related peroxidases Prx7 and Prx8 during abiotic stresses in barley roots. Acta Physiol. Plant., 2009, 31, 139144.
  • 332
    Terras, F. R. G., Schoofs, H. M. E., Thevissen, K., Osborn, R. W., Vanderleyden, J., Cammue, B. P. A. and Broekaert, W. F., Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol., 1993 103, 13111319.
  • 333
    Thevissen, K., Francois, I. E., Ferket, K. K. and Cammue, B. P. A., Interactions of antifungal plant defensins with fungal membrane components. Peptides. 2003, 24, 17051712.
  • 334
    Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W. and Broekart, F. W., Fungal membrane responses induced by plant defensins and thionin. J. Biol. Chem., 1999, 271, 1501815025.
  • 335
    Thevissen, K., Kristensen, H. H., Thomma, B. P., Cammue, B. P. and François, I. E., Therapeutic potential of antifungal plant and insect defensins. Drug Discov. Today, 2007, 12, 966971.
  • 336
    Thevissen, K., Osborn, R. W., Acland, D. P. and Broekaert, W. F., Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J. Biol. Chem., 1997, 272, 3217632181.
  • 337
    Thevissen, K., Osborn, R. W., Acland, D. P. and Broekaert, W. F., Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol. Plant Microbe Interact., 2000, 13, 5461.
  • 338
    Thevissen, K., Terras, F. R. and Broekaert, W. F., Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol., 1999, 65, 54515458.
  • 339
    Thevissen, K., Warnecke, D. C., Francois, I. E., Leipelt, M., Heinz, E., Ott, C., Zahringer, U., Thomma, B. P., Ferket, K. K. and Cammue, B. P., Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem., 2004, 279, 39003905.
  • 340
    Thomma, B. P., Cammue, B. P. and Thevissen, K., Plant defensins. Planta, 2002, 216, 193202.
  • 341
    Thomma, B. P., Cammue, B. P. and Thevissen, K., Mode of action of plant defensins suggests therapeutic potential. Curr. Drug Targets Infect. Disord., 2003, 3, 18.
  • 342
    Thompson, E. C., Fernandes, L. C., de Souza, N. O., Salzano, M. F., Bonatto, L. S. and Freitas, B. L., Molecular modeling of pathogenesis-related proteins of family 5. Cell Biochem. Biophys., 2006, 44, 385394.
  • 343
    Toriyama, K., Hanaoka, K., Okada, T. and Watanabe, M., Molecular cloning of a cDNA encoding a pollen extracellular protein as a potential source of a pollen allergen in Brassica rapa. FEBS Lett., 1998, 424, 234238.
  • 344
    Tornero, P., Conejero, V. and Vera, P., Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proc. Natl. Acad. Sci. USA, 1996, 93, 63326337.
  • 345
    Trudel, J., Grenier, J., Potvin, C. and Asselin, A., Several thaumatin-like proteins bind to β-1,3-glucans. Plant Physiol., 1998, 118, 14311438.
  • 346
    Tsuji, H., Kimoto, M. and Natori, Y., Allergens in major crops. Nutr. Res., 2001, 21, 925934.
  • 347
    Tuzun, S. and Somanchi, A., The possible role of PR proteins in multigenic and induced systemic resistance. In: Multigenic and Induced Systemic Resistance in Plants. S. Tuzun and E. Bent, Eds., Springer: New York, 2006, pp. 112142.
  • 348
    Vallée, F., Kadziola, Bourne, A. Y., Juy, M., Rodenburg, K. W., Svensson, B. and Haser, R., Barley α-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 å resolution. Structure, 1998, 6, 649659.
  • 349
    Valueva, T. A. and Mosolov, V. V., Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Moscow), 2004, 69, 13051309.
  • 350
    Varghese, J. N., Garrett, T. P., Colman, P. M., Chen, L., Hoj, P. B. and Fincher, G. B., Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Proc. Natl. Acad. Sci. U. S. A., 1993, 91, 27852789.
  • 351
    Vassilopoulou, E., Rigby, N., Moreno, F. J., Zuidmeer, L., Akkerdaas, J., Tassios, I., Papadopoulos, N. G., Saxoni-Papageorgiou, P., van Ree, R. and Mills, C., Effect of in vitro gastric and duodenal digestion on the allergenicity of grape lipid transfer protein. J. Allergy Clin. Immunol., 2006, 118, 473480.
  • 352
    Vassilopoulou, E., Zuidmeer, L., Akkerdaas, J., Tassios, I, Rigby, N. R., Mills, E. N., van Ree, R., Saxoni-Papageorgiou, P. and Papadopoulos, N. G., Severe immediate allergic reactions to grapes: part of a lipid transfer protein-associated clinical syndrome. Int. Arch. Allergy Immunol., 2007, 143, 92102.
  • 353
    Veronese, P., Ruiz, M. T., Coca, M. A., Hernandez-Lopez, A., Lee, H., Ibeas, J. I., Damsz, B., Pardo, J. M., Hasegawa, P. M., Bressan, R. A. and Narasimhan, M. L., In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol., 2003, 131, 15801590.
  • 354
    Vidal, C. and Gonzalez-Quintela, A., Food-induced and occupational asthma due to barley flour. Ann. Allergy Asthma Immunol., 1995, 75, 121124.
  • 355
    Wang, J., Zhang, G., Chen, J. and Wu, F., The changes of β-glucan content and β-glucanase activity in barley before and after malting and their relationships to malt qualities. Food Chem., 2004, 86, 223228.
  • 356
    Wang, L., Huang, X. and Zhou, Q., Response of peroxidase and catalase to acid rain stress during seed germination of rice, wheat, and rape. Front. Environ. Sci. Engin. China, 2008, 2, 364369.
  • 357
    Wang, X., Thoma, S. R., Carroll, A. J. and Duffin, L. K., Temporal generation of multiple antifungal proteins in primed seeds. Biochem. Biophys. Res. Commun., 2002, 292, 236242.
  • 358
    Website Gerhard Leubner Lab, University Freiburg, Germany. The Seed Biology Place. β-1,3-glucanase. http:www.seedbiology.deglucanase.asp (accessed November 2009).
  • 359
    Wei, Y., Zhang, Z., Andersen, C. H., Schmelzer, E., Gregersen, P. L., Collinge, D. B., Smedegaard-Petersen, V. and Thordal-Christensen, H., An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol. Biol., 1998, 36, 101112.
  • 360
    Wichers, H. J., Polyphenol oxidases and peroxidases: A pivotal role in food quality. Czech J. Food Sci., 2004, 22, 8588.
  • 361
    Yan, R., Hou, J., Ding, D., Guan, W., Wang, C., Wu, Z. and Li, M., In vitro antifungal activity and mechanism of action of chitinase against four plant pathogenic fungi. J. Basic Microbiol., 2008, 48, 293301.
  • 362
    Yang, Y-F., and Lyu, P-C., The proteins of plant defensin family and their application beyond plant disease control. Recent Pat. DNA Gene Seq., 2008, 2, 214218.
  • 363
    Yeats, H. T. and Rose, K. C. J., The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci., 2008, 17, 191198.
  • 364
    Yu, Y. G., Chung, C. H., Fowler, A. and Suh S. W., Amino acid sequence of a probable amylase/protease inhibitor from rice seeds. Arch. Biochem. Biophys., 1988, 265, 465475.
  • 365
    Yun, J. S., Kwon, S. I. and Eun, Y. M., Expression of (1–3)-β-glucanase in developing and germinating barley kernels. Korean Biochem. J., 1994, 27, 2732.
  • 366
    Zareie, R., Melanson, D. L. and Murphy, P. J., Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol. Plant-Microbe Interac., 2002, 15, 10311039.
  • 367
    Zhang, N., Jones, B. L. and Tao, H. P., Purification and characterization of a new class of insect α-amylase inhibitors from barley. Cereal Chem., 1997, 74, 119122.
  • 368
    Zhang, Z., Collinge, D. B. and Thordal-Christensen, H., Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J., 1995, 8, 139145.
  • 369
    Zhu, T., Song, F. and Zheng, Z., Molecular characterization of the rice pathogenesis-related protein, OsPR-4b, and its antifungal activity against Rhizoctonia solani. J. Phytopathol., 2006, 154, 378384.
  • 370
    Zuidmeer, L. and van Ree, R., Lipid transfer protein allergy: primary food allergy or pollen/food syndrome in some cases. Curr. Opin. Allergy Clin. Immunol., 2007, 7, 269273.