SEARCH

SEARCH BY CITATION

REFERENCES

  • Anderson TW, Rubin H. 1949. Estimators on the parameters of a single equation in a complete set of stochastic equations. Annals of Mathematical Statistics 21: 570582.
  • Angrist JD, Imbens GW, Krueger AB. 1999. Jacknife instrumental variables estimation. Journal of Applied Econometrics 14: 5767.
  • Arellano M. 2002. Sargan's instrumental variables estimation and the generalized method of moments. Journal of Business and Economic Statistics 20: 450459.
  • Bekker PA. 1994. Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62: 657681.
  • Berry S, Levinsohn J, Pakes A. 1995. Automobile prices in market equilibrium. Econometrica 63: 841890.
  • Bound J, Jaeger DA, Baker RM. 1995. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association 90: 443450.
  • Bowden RJ, Turkington DA. 1984. Instrumental Variables. Cambridge University Press: New York.
  • Bronnenberg BJ, Mahajan V. 2001. Unobserved retailer behavior in multimarket data: joint spatial dependence in market shares and promotion variables. Marketing Science 20: 284299.
  • Buse A. 1992. The bias of instrumental variables estimators. Econometrica 60: 173180.
  • Card D. 1999. The causal effect of education on earnings. In Handbook of Labor Economics, Vol. 3A, AshenfelterOC, CardD (eds). Elsevier Science: Amsterdam; 18011863.
  • Card D. 2001. Estimating the return to schooling: progress on some persistent econometric problems. Econometrica 69: 11271160.
  • Chintagunta PK. 2001. Endogeneity and heterogeneity in a probit demand model: estimation using aggregate data. Marketing Science 20: 442456.
  • Dagenais MG, Dagenais DL. 1997. Higher moment estimators for linear regression models with errors in variables. Journal of Econometrics 76: 193221.
  • Davidson R, MacKinnon JG. 1993. Estimation and Inference in Econometrics. Oxford University Press: New York.
  • Donald SG, Newey WK. 2001. Choosing the number of instruments. Econometrica 69: 11611191.
  • Ebbes P. 2004. Latent instrumental variables: a new approach to solve for endogeneity. PhD thesis, SOM Research School, University of Groningen.
  • Ebbes P, Böckenholt U, Wedel M. 2004. Regressor and random-effects dependencies in multilevel models. Statistica Neerlandica 58: 161178.
  • Ebbes P, Wedel M, Böckenholt U, Steerneman AGM. 2005. Solving and testing for regressor-error (in)dependence when no instrumental variables are available: with new evidence for the effect of education on income. Quantitative Marketing and Economics 3: 365392.
  • Erickson T, Whited TM. 2002. Two-step GMM estimation of the errors-in-variables model using high-order moments. Econometric Theory 18: 776799.
  • Fuller W. 1977. Some properties of a modification of the limited information estimator. Econometrica 45: 939953.
  • Greene WH. 2000. Econometric Analysis. Prentice-Hall: Upper Saddle River, NJ.
  • Hahn J, Hausman J. 2002. A new specification test for the validity of instrumental variables. Econometrica 70: 163189.
  • Hahn J, Hausman J. 2003. Weak instrumens: diagnosis and cures in empirical econometrics. Recent Advances in Econometric Methodology 93: 118125.
  • HandDJ, DalyF, LunnAD, McConwayKJ, OstrowskiE (eds). 1993. Handbook of Small Data Sets. Chapman & Hall/CRC: London.
  • Hogan V, Rigobon R. 2003. Using unobserved supply shocks to estimate the returns to educations. Technical report, University College Dublin.
  • Kadiyala KR. 1970. Testing for the indepence of regression disturbances. Econometrica 38: 97117.
  • Kleibergen F. 2002. Pivotal statistics for testing structural parameters in instrumental variables regression. Econometrica 70: 17811803.
  • Kleibergen F, Zivot E. 2003. Bayesian and classical approaches to instrumental variables regression. Journal of Econometrics 114: 2972.
  • Lewbel A. 1997. Constructing instruments for regressions with measurement error when no additional data are available, with an application to patents and R&D. Econometrica 65: 12011213.
  • Madansky A. 1959. The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association 54: 173205.
  • Nelson CR, Startz R. 1990. Some further results on the exact small sample properties of the instrumental variable estimator. Econometrica 58: 967976.
  • Nevo A. 2000. A practitioner's guide to estimation of random-coefficients logit models of demand. Journal of Economics and Management Strategy 9: 513548.
  • Nevo A. 2001. Measuring market power in the ready-to-eat cereal industry. Econometrica 69: 307342.
  • Petrin A, Train K. 2002. Omitted product attributes in discrete choice models. Working paper, University of Berkeley.
  • Redner RA, Walker HF. 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26: 195239.
  • Rigobon R. 2003. Identification through heteroskedasticity. Review of Economics and Statistics 85: 777792.
  • Ruud PA. 2000. An Introduction to Classical Econometric Theory. Oxford University Press: New York.
  • Sargan JD. 1958. The estimation of economic relationships using instrumental variables. Econometrica 26: 393415.
  • Staiger D, Stock JH. 1997. Instrumental variables regression with weak instruments. Econometrica 65: 557586.
  • Stock JH, Wright JH, Yogo M. 2002. A survey of weak instruments and weak identification in generalized method of moments. Journal of Business and Economic Statistics 20: 518529.
  • Sudhir K. 2001. Competitive pricing behavior in the auto market: a structural analysis. Marketing Science 20: 4260.
  • Titterington DM, Smith AFM, Makov UE. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley: Chichester.
  • Van Dijk A, Van Heerde HJ, Leeflang PSH, Wittink DR. 2004. Similarity-based spatial methods for estimating shelf space elasticities from correlational data. Quantitative Marketing and Economics 2: 257277.
  • Verbeek M. 2000. A Guide to Modern Econometrics. Wiley: Chichester.
  • Villas-Boas JM, Winer RS. 1999. Endogeneity in brand choice models. Management Science 45: 13241338.
  • Wald A. 1940. The fitting of straight lines if both variables are subject to error. Annals of Mathematical Statistics 11: 284300.
  • Wansbeek T, Wedel M. 1999. Marketing and econometrics: editors' introduction. Journal of Econometrics 89: 114.
  • White H. 2001. Asymptotic Theory for Econometricians. Academic Press: New York.
  • Wooldridge JM. 2002. Econometric Analysis of Cross Section and Panel Data. Massachusetts Institute of Technology: Cambridge, MA.
  • Yang S, Chen Y, Allenby GM. 2003. Bayesian analysis of simultaneous demand and supply. Quantitative Marketing and Economics 1: 251275.