SEARCH

SEARCH BY CITATION

REFERENCES

  • Almon S. 1965. The distributed lag between capital appropriations and expenditures. Econometrica 33: 178196.
  • Anderson HM, Athanasopoulos G, Vahid F. 2007. Nonlinear autoregressive leading indicator models of output in G-7 countries. Journal of Applied Econometrics 22: 6387.
  • Andrews DWK. 1993. Tests for parameter instability and structural change with unknown change point. Econometrica 61: 821856.
  • Andrews DWK, Ploberger W. 1994. Optimal tests when a nuisance parameter is present only under the alternative. Econometrica 62: 13831414.
  • Becker R, Hurn AS. 2009. Testing for nonlinearity in mean in the presence of heteroskedasticity. Economic Analysis and Policy 39: 311326.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289300.
  • Clark TE, West KD. 2007. Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics 138: 291311.
  • Davies RB. 1987. Hypothesis testing when a nuisance parameter is only identified under the alternative. Biometrika 74: 3343.
  • Davis EP, Fagan G. 1997. Are financial spreads useful indicators of future inflation and output growth in EU countries? Journal of Applied Econometrics 12: 701714.
  • Estrella A, Hardouvelis GA. 1991. The term structure as a predictor of real economic activity. Journal of Finance 46: 555576.
  • Galvão AB. 2009. Changes in predictive ability with mixed frequency data. Mimeo, Department of Economics, Queen Mary, University of London.
  • Ghysels E, Santa-Clara P, Valkanov R. 2005. There is a risk–return tradeoff after all. Journal of Financial Economics 76: 509548.
  • Ghysels E, Santa-Clara P, Valkanov R. 2006. Predicting volatility: getting the most out of return data sampled at different frequencies. Journal of Econometrics 131: 5995.
  • Ghysels E, Sinko A, Valkanov R. 2007. MIDAS regressions: further results and new directions. Econometric Reviews 26: 5390.
  • Godfrey LG, Orme CD. 2004. Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients. Economics Letters 82: 281287.
  • Gonçalves S, Kilian L. 2004. Bootstrapping autoregressions with conditional heteroskedasticity of unknown form. Journal of Econometrics 123: 89120.
  • Hamilton JD, Kim DH. 2002. A re-examination of the predictability of economic activity using the yield spread. Journal of Money, Credit and Banking 34: 340360.
  • Hansen B. 1996. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64: 413430.
  • Lundbergh S, Teräsvirta T. 1998. Modelling high-frequency time series with STAR-GARCH models. SSE/EFI working paper number 291, Stockholm School of Economics.
  • Luukkonen R, Saikkonen P, Teräsvirta T. 1988. Testing linearity against smooth transition autoregressive models. Biometrika 75: 491499.
  • Medeiros MC, Veiga A. 2003. Diagnostic checking in a flexible nonlinear time series model. Journal of Time Series Analysis 24: 461482.
  • Medeiros MC, Veiga A. 2005. A flexible coefficient smooth transition time series model. IEEE Transactions on Neural Networks 16: 97113.
  • Potter SM. 1995. A nonlinear approach to US GDP. Journal of Applied Econometrics 10: 109125.
  • Sensier M, Osborn DR, Öcal N. 2002. Asymmetric interest rate effects for the UK real economy. Oxford Bulletin of Economics and Statistics 64: 315339.
  • Sensier M, van Dijk D. 2004. Testing for volatility changes in US macroeconomic time series. Review of Economics and Statistics 86: 833839.
  • Stinchombe MB, White H. 1998. Consistent specification testing with nuisance parameters present only under the alternative. Econometric Theory 14: 295325.
  • Teräsvirta T. 1994. Specification, estimation and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association 89: 208218.
  • Teräsvirta T. 1998. Modelling economic relationships with smooth transition regressions. In Handbook of Applied Economic Statistics, Ullah A, Giles DEA (eds). Marcel Dekker: New York; 507552.
  • Teräsvirta T, van Dijk D, Medeiros MC. 2005. Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: a re-examination. International Journal of Forecasting 21: 755774.
  • van Dijk D, Teräsvirta T, Franses PH. 2002. Smooth transition autoregressive models: a survey of recent developments. Econometric Reviews 21: 147.