SEARCH

SEARCH BY CITATION

REFERENCES

  • Anderson EW, Hansen LP, McGrattan ER, Sargent TJ. 1996. On the mechanics of forming and estimating dynamic linear economies. In Handbook of Computational Economics, AmmanHM et al. (eds). Elsevier: Amsterdam.
  • Aruoba SB, Fernández-Villaverde J, Rubio-Ramírez J. 2003. Comparing solution methods for dynamic equilibrium economies. Federal Reserve Bank of Atlanta Working Paper 2003–27.
  • Bouakez H, Cardia E, Ruge-Murcia FJ. 2002. Habit formation and the persistence of monetary shocks. Bank of Canada Working Paper 2002–27.
  • CooleyTF (ed.). 1995. Frontiers of Business Cycle Research, Princeton University Press: Princeton, NJ.
  • Cooley TF, Prescott EC. 1995. Economic growth and business cycles. In Frontiers of Business Cycle Research, CooleyTF (ed.). Princeton University Press: Princeton, NJ.
  • DeJong DN, Ingram BF, Whiteman CH. 2000. A Bayesian approach to dynamic macroeconomics. Journal of Econometrics 98: 203223.
  • Dib A. 2001. An estimated Canadian DSGE model with nominal and real rigidities. Bank of Canada Working Paper 2001–26.
  • Doucet A, de Freitas N, Gordon N. 2001. Sequential Monte Carlo Methods in Practice. Springer-Verlag: New York.
  • Fernández-Villaverde J, Rubio-Ramírez J. 2004. Comparing dynamic equilibrium models to data: a Bayesian approach. Journal of Econometrics 123: 153187.
  • Fernández-Villaverde J, Rubio-Ramírez J. 2004. Estimating nonlinear dynamic equilibrium economies: a likelihood approach. Mimeo, University of Pennsylvania.
  • Fernández-Villaverde J, Rubio-Ramírez J, Santos M. 2004. Convergence properties of the likelihood of computed dynamic equilibrium models. Mimeo, University of Pennsylvania.
  • Geweke J. 1998. Using simulation methods for Bayesian econometric models: inference, development and communication. Federal Reserve Bank of Minneapolis Staff Report 249.
  • Gordon NJ, Salmond DJ, Smith AFM. 1993. Novel approaches to NonLinear/Non-Gaussian Bayesian State Estimation. IEE Proceedings-F 140: 107113.
  • Hall GJ. 1996. Overtime, effort and the propagation of business cycle shocks. Journal of Monetary Economics 38: 139160.
  • Harvey AC. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press: Cambridge.
  • Ireland P. 2002. Technology shocks in the new Keynesian model. Mimeo, Boston College.
  • Jeffreys H. 1961. Theory of Probability, 3rd edn. Oxford University Press: Oxford.
  • Kim C, Nelson CR. 1999. State-Space Models with Regime Switching. MIT Press: Boston, MA.
  • Kim C, Piger J. 2002. Nonlinearity and the permanent effects of recessions. Federal Reserve Bank of St. Louis Working Paper 2002-014E.
  • Kim J. 2000. Constructing and estimating a realistic optimizing model of monetary policy. Journal of Monetary Economics 45: 329359.
  • Kim J, Kim S, Schaumburg E, Sims C. 2003. Calculating and using second order accurate solutions of discrete time dynamic equilibrium models. Mimeo, Princeton University.
  • Kitagawa G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5: 125.
  • Landon-Lane J. 1999. Bayesian comparison of dynamic macroeconomic models. PhD thesis, University of Minnesota.
  • Lubik T, Schorfheide F. 2003. Do central banks respond to exchange rates? A structural investigation? Mimeo, University of Pennsylvania.
  • McGrattan E, Rogerson R, Wright R. 1997. An equilibrium model of the business cycle with household production and fiscal policy. International Economic Review 33: 573601.
  • Mengersen KL, Robert CP, Guihenneuc-Jouyaux C. 1999. MCMC convergence diagnostics: a ‘reviewww’. In Bayesian Statistics 6, BergerJ, BernardoJ, DawidAP, SmithAFM (eds). Oxford Sciences Publications: Oxford.
  • Moran K, Dolar V. 2002. Estimated DGE models and forecasting accuracy: a preliminary investigation with Canadian data. Bank of Canada Working Paper 2002–18.
  • Otrok C. 2001. On measuring the welfare cost of business cycles. Journal of Monetary Economics 47: 6192.
  • Pitt MK, Shephard N. 1999. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association 94: 590599.
  • Rabanal P, Rubio-Ramírez J. 2003. Comparing new Keynesian models of the business cycle: a Bayesian approach. Federal Reserve Bank of Atlanta Working Paper 2003–30.
  • Rust J. 1994. Structural estimation of Markov decision processes. In Handbook of Econometrics, Vol. 4, EngleRF, McFaddenDL (eds). North Holland: Amsterdam.
  • Sargent TJ. 1989. Two models of measurements and the investment accelerator. Journal of Political Economy 97: 251287.
  • Schorfheide F. 2000. Loss function-based evaluation of DGSE models. Journal of Applied Econometrics 15: 645670.
  • Sims CA, Zha T. 2002. Macroeconomic switching. Mimeo, Princeton University.
  • Smets F, Wouters R. 2003. Shocks and frictions in US business cycle fluctuations: a Bayesian DSGE approach. Mimeo, European Central Bank.
  • Uhlig H. 1999. A toolkit for analyzing nonlinear dynamic stochastic models easily. In Computational Methods for the Study of Dynamic Economies, MarimonR, ScottA. (eds). Oxford University Press: Oxford.
  • Vuong QH. 1989. Likelihood ratio test for model selection and non-nested hypothesis. Econometrica 57: 307333.