• genotoxicity;
  • cytotoxicity;
  • screening;
  • microtitre plate;
  • SOS response;
  • miniaturization;
  • AMES;
  • Salmonella typhimurium;
  • Vibrio fisheri;
  • homogeneous


In order to assess the robustness, sensitivity and specificity of a recently developed Vitotox™ test, 17 blind coded chemicals and three environmental water samples were tested at the EILATox-Oregon Workshop using the Thermo Electron Vitotox kit. The Vitotox test is a rapid geno- and cytotoxicity test using standard 96- or 384-well microtitre plates. The genotoxicity test is based on two genetically modified Salmonella typhimurium strains containing bacterial luciferase operon from Vibrio fisheri under the SOS inducible promoter. The SOS system is an inducible network in Escherichia coli that responds to DNA damage and activates DNA repair. The Vitotox genotoxicity test bacteria strain carries bacterial luciferase genes under the control of SOS inducible promoter and therefore any DNA damage inside the cells induces the production of bacterial luciferase. The luciferase expression is then followed with a microtitre plate luminometer for 3 h after mixing different dilutions of sample with the test bacteria. The genotoxicity index is calculated for each dilution and the genotoxicity of the sample is interpreted based on kinetic time curves and genotoxicity vs concentration/dilution curves. Cytotoxicity of the sample is determined simultaneously with another test strain containing the same luciferase operon controlled by the constitutive promoter. This bacterium produces constant bioluminescence and any decrease of the bioluminescence production is used as a marker for cytotoxicity.

As a miniaturized microtitre plate assay the Vitotox test requires a very small quantity of the sample material. The samples used in the workshop were diluted 1 : 10 or 1 : 100 before testing. Genotoxicity and cytotoxicity data were collected at dilutions of 1 : 10–1 : 2000. When the samples of the EILATox-Oregon Workshop were tested using the Vitotox test, four coded chemicals out of 17 were determined to be genotoxic. Seven chemicals and one environmental sample were found to be cytotoxic. Three chemical samples were found to be both geno- and cytotoxic. Copyright © 2004 John Wiley & Sons, Ltd.