• apoptosis;
  • piceatannol;
  • myricetine;
  • reactive oxygen species


Numerous studies have shown the potential of dietary polyphenols as anticarcinogenic agents. The aim of the present study was to evaluate the apoptotic effects of piceatannol and myricetin, naturally occurring polyphenols in red wine, alone or in combination, in two human cell lines: HL-60 (leukemia) and HepG2 (hepatoma). Apoptotic cells were identified by chromatin condensation, poly(ADP-ribose) polymerase cleavage and flow cytometry analysis. Results from TUNEL assay showed that piceatannol or myricetin alone induced apoptotic cell death in a concentration- and time-dependent manners in HL-60 cells. Furthermore, in combined treatment the percentage of apoptotic HL-60 cells was significantly higher. Nevertheless, the percentage of TUNEL positive HepG2 cells only was significant after piceatannol treatment and in combined treatment was even lower than in cells treated with piceatannol alone. Moreover, we also studied the relative reactive oxygen species (ROS) production. Our results indicate that apoptosis induced by piceatannol or myricetin occurs through an ROS-independent cell death pathway. In conclusion, piceatannol and myricetin synergistically induced apoptosis in HL-60 cells but not in HepG2 cells. These findings suggest that the potential anticarcinogenic properties of dietary polyphenols depend largely on the cell line used. The relevance of these data needs to be verified in human epidemiological studies. Copyright © 2011 John Wiley & Sons, Ltd.