• 15 steps in percutaneous absorption;
  • decontamination;
  • Rougier method;
  • powdered stratum corneum;
  • wash/rubbing effects


Since the advent of World War II, governments and laboratories have made a concerted effort to improve prophylactic and therapeutic interventions counteracting cutaneously directed chemical warfare agents (CWA), and by inference, common industrial and consumer dermatotoxicants. In vitro percutaneous penetration assays, first utilized by Tregear in the 1940s and presently in various modifications, have been fundamental to this effort. Percutaneous penetration, often considered a simple one-step diffusion process, consists of at least 15 steps. The first part of this review covers the initial steps related to absorption and excretion kinetics, vehicle characteristics, and tissue disposition. Importantly, the partitioning behavior and stratum corneum (SC) diffusion by a wide physicochemical array of compounds shows that many compounds have similar diffusion coefficients determining their percutaneous absorption in vivo. After accounting for anatomical SC variation, the penetration flux value of a substance depends mainly on its SC/vehicle partition coefficient. Additionally, the SC acts as a ‘reservoir’ for topically applied molecules and application of tape stripping has been found to quantify the chemical remaining in the SC which can predict total molecular penetration in vivo. Decontamination is of particular concern and even expediting standard washing procedures after dermal chemical exposure often fails to remove chemicals. This overview summarizes knowledge of percutaneous penetration extending insights into the complexities of penetration, decontamination and potential newer assays that may be of practical importance. Copyright © 2012 John Wiley & Sons, Ltd.