• silica/gold nanoshells;
  • plasmon resonance scattering;
  • bioimaging;
  • phage antibodies


The authors describe a quantitative evaluation of the efficacy of cell labeling with plasmon-resonant light-scattering nanoparticles used as contrast agents for dark-field microscopy imaging. The experimental model is based on the biospecific labeling of pig embryo kidney (SPEV) cells with primary phage antibodies, followed by the dark-field microscopic visualization using conjugates of silica/gold nanoshells with secondary rabbit antiphage antibodies. To quantify nanoparticle binding, the authors introduce the labeling-efficacy factor (LEF) which is equal to the ratio of the bound-particle pixels per cell to the total number of pixels occupied by the cell. The LEF is calculated by an imaging-analysis algorithm based on the freely available ImageJ Java-based processing code. In terms of the LEF, a distinct difference was found between intact, nonspecifically labeled, and biospecifically labeled cells. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)