Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light–cell interaction


  • Formerly with the Technology Innovation Management Program in the Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, ON, Canada.


The formulation of the finite-difference time-domain (FDTD) approach is presented in the framework of its potential applications to in-vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive-index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in-vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open up a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)