Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells



In-vivo multicolor photoacoustic (PA) flow cytometry for ultrasensitive molecular detection of the CD44+ circulating tumor cells (CTCs) is demonstrated on a mouse model of human breast cancer. Targeting of CTCs with stem-like phenotype, which are naturally shed from parent tumors, was performed with functionalized gold and magnetic nanoparticles. Results in vivo were verified in vitro with a multifunctional microscope, which integrates PA, photothermal (PT), fluorescent and transmission modules. Magnet-induced clustering of magnetic nanoparticles in individual cells significantly amplified PT and PA signals. The novel noninvasive platform, which integrates multispectral PA detection and PT therapy with a potential for multiplex targeting of many cancer biomarkers using multicolor nanoparticles, may prospectively solve grand challenges in cancer research for diagnosis and purging of undetectable yet tumor-initiating cells in circulation before they form metastasis. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)