• Evanescent wave sensor;
  • silica-on-silicon;
  • growth hormone;
  • FDTD


An evanescent wave based biosensor is developed on the silica-on-silicon (SOS) with a cascaded waveguide coupler for the detection of recombinant growth hormone. So far, U -bends and tapered waveguides are demonstrated for increasing the penetration depth and enhancing sensitivity of the evanescent wave sensor. In this work, a monolithically integrated sensor platform containing a cascaded waveguide coupler with optical power splitters and combiners designed with S -bends and tapper waveguides is demonstrated for an enhanced detection of recombinant growth hormone. In the cascaded waveguide coupler, a large surface area to bind the antibody with increased penetration depth of evanescent wave to excite the tagged-rbST is obtained by splitting the waveguide into multiple paths using Y splitters designed with s -bends and subsequently combining them back to a single waveguide through tapered waveguide and combiners. Hence a highly sensitive fluoroimmunoassay sensor is realized. Using the 2D FDTD (Finite-difference time-domain method) simulation of waveguide with a point source in Rsoft FullWAVE, the fluorescence coupling efficiency of straight and bend section of waveguide is analyzed. The sensor is demonstrated for the detection of fluorescently-tagged recombinant growth hormone with the detection limit as low as 25 ng/ml. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)