• fluorescence;
  • zinc protoporphyrin;
  • protoporphyrin IX;
  • blood;
  • spectrum analysis


Quantification of erythrocyte zinc protoporphyrin IX (ZnPP) and protoporphyrin IX (PPIX), individually or jointly, is useful for the diagnostic evaluation of iron deficiency, iron-restricted erythropoiesis, lead exposure, and porphyrias. A method for simultaneous quantification of ZnPP and PPIX in unwashed blood samples is described, using dual-wavelength excitation to effectively eliminate background fluorescence from other blood constituents. In blood samples from 35 subjects, the results of the dual-wavelength excitation method and a reference high performance liquid chromatography (HPLC) assay were closely correlated both for ZnPP (rs = 0.943, p < 0.0001; range 37–689 μmol ZnPP/mol heme, 84–1238 nmol/L) and for PPIX (rs = 0.959, p < 0.0001; range 42–4212 μmol PPIX/mol heme, 93–5394 nmol/L). In addition, for ZnPP, the proposed method is compared with conventional single-wavelength excitation and with commercial front-face fluorimetry of washed erythrocytes and whole blood. We hypothesize that dual-wavelength excitation fluorimetry will provide a new approach to the suppression of background fluorescence in blood and tissue measurements of ZnPP and PPIX. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)