• galactosylated surface;
  • immobilization;
  • ligand;
  • hepatocyte;
  • function maintenance


Galactosylated surface is an attractive substrate for hepatocyte culture because of the specific interaction between the galactose ligand and the asialoglycoprotein receptor on hepatocytes. In this study, we described a scheme to achieve high density of immobilized galactose ligands on polyethylene terephthalate (PET) surface by first surface-grafting polyacrylic acid on plasma-pretreated PET film under UV irradiation, followed by conjugation of a galactose derivative (1-O-(6′-aminohexyl)-D-galactopyranoside) to the grafted polyacrylic acid chains. A high galactose density of 513 nmol/cm2 on the PET surface was used in this study to investigate the behavior of cultured hepatocyte. This engineered substrate showed high affinity to fluorescein isothiocyanate-lectin binding. Primary rat hepatocytes, when seeded at a density of 2 × 105 cells/cm2, attached to the galactosylated PET substrate at a similar efficiency compared with collagen-coated substrate. The hepatocytes spontaneously formed aggregates 1 day after cell seeding and showed better maintenance of albumin secretion and urea synthesis functions than those cultured on collagen-coated surface. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 1093–1104, 2003