Get access

Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds

Authors

  • Daniel A. Harrington,

    1. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
    2. Department of Urology, Northwestern University, Chicago, Illinois 60611
    3. Division of Pediatric Urology, Children's Memorial Hospital, Chicago, Illinois 60614
    Search for more papers by this author
  • Earl Y. Cheng,

    1. Department of Urology, Northwestern University, Chicago, Illinois 60611
    2. Division of Pediatric Urology, Children's Memorial Hospital, Chicago, Illinois 60614
    Search for more papers by this author
  • Mustafa O. Guler,

    1. Department of Chemistry, Northwestern University, Evanston, Illinois 60208
    Search for more papers by this author
  • Leslie K. Lee,

    1. Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
    Search for more papers by this author
  • Jena L. Donovan,

    1. Division of Pediatric Urology, Children's Memorial Hospital, Chicago, Illinois 60614
    Search for more papers by this author
  • Randal C. Claussen,

    1. Department of Chemistry, Northwestern University, Evanston, Illinois 60208
    Search for more papers by this author
  • Samuel I. Stupp

    Corresponding author
    1. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
    2. Department of Chemistry, Northwestern University, Evanston, Illinois 60208
    3. Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
    • Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
    Search for more papers by this author

  • No benefit of any kind will be received either directly or indirectly by the author(s).

Abstract

An important challenge in regenerative medicine is the design of suitable bioactive scaffold materials that can act as artificial extracellular matrices. We reported previously on a family of peptide-amphiphile (PA) molecules that self-assemble into high-aspect ratio nanofibers under physiological conditions, and can display bioactive peptide epitopes along each nanofiber's periphery. One type of PA displays its epitope at a branched site using a lysine dendron, a molecular feature that improves epitope availability on the nanofiber surface. In this work, we describe the application of these branched PA (b-PA) systems as self-assembling coatings for fiber-bonded poly(glycolic acid) scaffolds. b-PAs bearing variations of the RGDS adhesion epitope from fibronectin were shown by elemental analysis to coat repeatably onto fiber scaffolds. The retention of supramolecular organization after coating on the scaffold was demonstrated through spectroscopic identification of β-sheet structures and the close association of hydrophobic tails in a model pyrene-containing PA system. Primary human bladder smooth muscle cells demonstrated greater initial adhesion to b-PA-functionalized scaffolds than to bare scaffolds or to those coated with linear PAs. This strategy of molecular design and coating may have potential application in bladder tissue regeneration. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006

Ancillary