Get access

Polyelectrolyte thromboresistant affinity coatings for modification of devices contacting blood

Authors

  • Nadezhda A. Samoilova,

    1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    Search for more papers by this author
  • Maria A. Krayukhina,

    Corresponding author
    1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    2. A. N. Bakulev Research Center of Cardiovascular Surgery, Russian Academy of Medical Sciences, 135 Roublevskoye shosse, Moscow 121552, Russia
    • A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    Search for more papers by this author
  • Svetlana P. Novikova,

    1. A. N. Bakulev Research Center of Cardiovascular Surgery, Russian Academy of Medical Sciences, 135 Roublevskoye shosse, Moscow 121552, Russia
    Search for more papers by this author
  • Tatyana A. Babushkina,

    1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    Search for more papers by this author
  • Iliya O. Volkov,

    1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    Search for more papers by this author
  • Lidiya I. Komarova,

    1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    Search for more papers by this author
  • Liliya I. Moukhametova,

    1. Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
    Search for more papers by this author
  • Roza B. Aisina,

    1. Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
    Search for more papers by this author
  • Ekaterina A. Obraztsova,

    1. Departement of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
    Search for more papers by this author
  • Igor V. Yaminsky,

    1. Departement of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
    Search for more papers by this author
  • Igor A. Yamskov

    1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova,Moscow 119991, Russia
    Search for more papers by this author

Abstract

The modification of hydrophobic polyethylene/polystyrene surfaces of medical devices with bilayer/multilayer coatings (BCs/MCs) based on polyelectrolyte complexes (PEC) of modified poly(N-vinylpyrrolidone-co-maleic acid) copolymer (VPMA) with chitosan, amphiphilic chitosan, or albumin was studied. The VPMA contained l-Lysine as affinity ligand for plasminogen attached through α-amino group. The surface properties and chemical composition of the surfaces investigated were analyzed, using sessile-drop water contact angle measurements, attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The specific adsorption of plasminogen (precursor of fibrinolytic enzyme plasmin) from its solutions and from human blood plasma on the modified surfaces was investigated. It was established that polyelectrolyte MCs are more efficient than single-layer BCs and the affine polymer coatings without interlayer. A thrombogenicity decrease for the materials modified with BCs and MCs was shown in in vitro and ex vivo trials. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res 2007

Ancillary