• scaffold;
  • bone tissue engineering;
  • PHBV;
  • biodegradable;
  • UMR-106;
  • BSP


In this study, we related porosity and collagen coating of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffold to the degree of cell proliferation on the engineered PHBV scaffold. Based on the [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium, inner salt] (MTS) assay, we established that UMR-106 cell proliferation is maximum in collagen-coated porous PHBV film followed by porous PHBV film and least in nonporous PHBV film. RT-PCR analysis of the proliferated cells on tissue culture polystyrene (TCPS) and porous and nonporous PHBV scaffolds revealed that the proliferated cells retained their osteoblastic phenotype characteristics. Atomic absorption analysis was performed to measure the extent of calcium conversion by the cells grown on PHBV and TCPS. The calcium content of the culture media was used to indirectly measure the mineralization ability of the cells. The extent of calcium conversion by the cells was found to depend on the incubation time. Based on the results of the study, modified PHBV matrix seems to be a suitable matrix candidate for bone tissue engineering application. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010