• fibronectin adsorption;
  • grafting;
  • poly(ethyl acrylate);
  • hydroxyethyl acrylate;
  • acrylic acid;
  • methacrylic acid


The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical composition has been designed to increase wettability and to introduce acid functional groups. FN was adsorbed to PEA, poly(ethyl acrylate-co-hydroxyethyl acrylate), poly(ethyl acrylate-co-acrylic acid), and poly(ethyl acrylate-co-methacrylic acid) copolymers, and covalently cross-linked to poly(ethyl acrylate-co-acrylic acid) and poly(ethyl acrylate-co-methacrylic acid) copolymers. Amount of adhered FN and exhibition of RGD and FNIII7–10 fragments involved in cell adhesion were quantified with enzyme-linked immunosorbent assay tests. Even copolymers with a lower content of the hydrophilic component showed a decrease in water contact angle. In addition, FN was successfully fixed on all surfaces, especially on the hydrophobic surfaces. However, it was demonstrated that exposure of its cell adhesion sequences, which is the key factor in cell adhesion and proliferation, was higher for hydrophilic surfaces. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.