Get access

A silica-calcium-phosphate nanocomposite drug delivery system for the treatment of hepatocellular carcinoma: In vivo study



Hepatocellular carcinoma (HCC) is notoriously difficult to treat with systemic chemotherapy. The aim of this study was to evaluate a silica-calcium-phosphate nanocomposite (SCPC75) drug delivery system (DDS) as a means to localize cisplatin treatment within the tumor, while reducing systemic toxicity, in a rat model of HCC. The SCPC75 was prepared and loaded with cisplatin and Fourier transform infrared analyses demonstrated even drug distribution within the SCPC75. A rat model of subcutaneous HCC formation was established and animals treated by either systemic cisplatin injection (sCis) or with SCPC75-Cis hybrid placed adjacent (ADJ) to or within (IT) the tumor. Five days after implantation, 50–55% of the total cisplatin loaded had been released from the SCPC75-Cis hybrids resulting in an approximately 50% decrease in tumor volume compared with sCis treatment. sCis-treated animals exhibited severe side effects, including rapid weight loss and decreased liver and kidney function, effects not observed in SCPC75-Cis-treated animals. Analysis of cisplatin distribution demonstrated drug concentrations in the tumor were 21 and 1.5 times higher in IT and ADJ groups, respectively, compared with sCis-treated animals. These data demonstrate the SCPC75 DDS can provide an effective, localized treatment for HCC with significantly reduced toxicity when compared with systemic drug administration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 190–202, 2014.