Screening study on hemolysis suppression effect of an alternative plasticizer for the development of a novel blood container made of polyvinyl chloride



The aim of this study is to identify a plasticizer that is effective in the suppression of the autohemolysis of the stored blood and can be used to replace di(2-ethylhexyl) phthalate (DEHP) in blood containers. The results of hemolysis test using mannitol-adenine-phosphate/red cell concentrates (MAP/RCC) spiked with plasticizers included phthalate, phthalate-like, trimeliate, citrate, and adipate derivatives revealed that di-isononyl-cyclohexane-1,2-dicarboxylate (Hexamoll® DINCH), di(2-ethylhexyl)-1,2,3,6-tetrahydro-phthalate (DOTP), and diisodecyl phthalate (DIDP) exhibited a hemolysis suppression effect almost equal to that of DEHP, but not other plasticizers. This finding suggested that the presence of 2 carboxy-ester groups at the ortho position on a 6-membered ring of carbon atoms may be required to exhibit such an effect. The hemolytic ratios of MAP/RCC-soaked polyvinyl chloride (PVC) sheets containing DEHP or different amounts of DINCH or DOTP were reduced to 10.9%, 9.2–12.4%, and 5.2–7.8%, respectively (MAP/RCC alone, 28.2%) after 10 weeks of incubation. The amount of plasticizer eluted from the PVC sheet was 53.1, 26.1–36.5, and 78.4–150 µg/mL for DEHP, DINCH, and DOTP, respectively. PVC sheets spiked with DIDP did not suppress the hemolysis induced by MAP/RCC because of low leachability (4.8–6.0 µg/mL). These results suggested that a specific structure of the plasticizer and the concentrations of least more than ∼10 µg/mL were required to suppress hemolysis due to MAP/RCC. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 102B: 721–728, 2014.