SEARCH

SEARCH BY CITATION

References

  • 1
    Hadjidakis DJ, Androulakis II. Bone remodeling. Ann NY Acad Sci. 2006; 1092: 38596.
  • 2
    Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling. In: Marcus R, Feldman B, Kelsey J, editors. Osteoporosis. San Diego: Academic Press; 1996. p. 3159.
  • 3
    Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009; 19: 21933.
  • 4
    Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005; 11: 7681.
  • 5
    Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int. 1981; 33: 34951.
  • 6
    Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003; 18: 94954.
  • 7
    Morita M, Ebihara A, Itoman M, Sasada T. Progression of osteoporosis in cancellous bone depending on trabecular structure. Ann Biomed Eng. 1994; 22: 5329.
  • 8
    Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006; 354: 225061.
  • 9
    Balena R, Shih MS, Parfitt AM. Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res. 1992; 7: 147582.
  • 10
    Lecaille F, Kaleta J, Bromme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev. 2002; 102: 445988.
  • 11
    Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaisse JM. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998; 273: 3234752.
  • 12
    Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996; 273: 12368.
  • 13
    Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA. A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res. 1996; 6: 10505.
  • 14
    Ho N, Punturieri A, Wilkin D, Szabo J, Johnson M, Whaley J, Davis J, Clark A, Weiss S, Francomano C. Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res. 1999; 14: 164953.
  • 15
    Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J. Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone. 2000; 26: 36773.
  • 16
    Pennypacker BL, Duong LT, Cusick TE, Masarachia PJ, Gentile MA, Gauthier JY, Black WC, Scott BB, Samadfam R, Smith SY, Kimmel DB. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011; 26: 25262.
  • 17
    Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999; 14: 165463.
  • 18
    Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S, Rodan G, Kimmel D. Bone density, strength, and formation in adult cathepsin K (-/-) mice. Bone. 2009; 44: 199207.
  • 19
    Kiviranta R, Morko J, Uusitalo H, Aro HT, Vuorio E, Rantakokko J. Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res. 2001; 16: 144452.
  • 20
    Rodan S, Duong L. Cathepsin K—a new molecular target for osteoporosis. IBMS BoneKey. 2008; 5: 1624.
  • 21
    Lark MW, Stroup GB, James IE, Dodds RA, Hwang SM, Blake SM, Lechowska BA, Hoffman SJ, Smith BR, Kapadia R, Liang X, Erhard K, Ru Y, Dong X, Marquis RW, Veber D, Gowen M. A potent small molecule, nonpeptide inhibitor of cathepsin K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. Bone. 2002; 30: 74653.
  • 22
    Xiang A, Kanematsu M, Kumar S, Yamashita D, Kaise T, Kikkawa H, Asano S, Kinoshita M. Changes in micro-CT 3D bone parameters reflect effects of a potent cathepsin K inhibitor (SB-553484) on bone resorption and cortical bone formation in ovariectomized mice. Bone. 2007; 40: 12317.
  • 23
    Yamane H, Sakai A, Mori T, Tanaka S, Moridera K, Nakamura T. The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice. Bone. 2009; 44: 105562.
  • 24
    Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone. 2007; 40: 12231.
  • 25
    Stroup GB, Kumar S, Jerome CP. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcif Tissue Int. 2009; 85: 34455.
  • 26
    Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong le T, Falgueyret JP, Kimmel DB, Lamontagne S, Leger S, LeRiche T, Li CS, Masse F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Therien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008; 18: 9238.
  • 27
    Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, Dasilva C, Petrovic R, Santora AC, Ince BA, Lombardi A. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2010; 26: 24251.
  • 28
    Masarachia PJ, Pennypacker BL, Pickarshi M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong LT. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2011 Nov 23 [Epub ahead of print].
  • 29
    Lundeen GA, Knecht SL, Vajda EG, Bloebaum RD, Hofmann AA. The contribution of cortical and cancellous bone to dual-energy X-ray absorptiometry measurements in the female proximal femur. Osteoporos Int. 2001; 12: 1928.
  • 30
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987; 2: 595610.
  • 31
    Fox J, Miller MA, Newman MK, Recker RR, Turner CH, Smith SY. Effects of daily treatment with parathyroid hormone 1–84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone. 2007; 41: 32130.
  • 32
    Frost HM, Villaneuva AR. Measurement of osteoblastic activity in diaphyseal bone. Stain Technol. 1960; 35: 17990.
  • 33
    Miller PD, McClung M. Prediction of fracture risk. I: Bone density. Am J Med Sci. 1996; 312: 2579.
  • 34
    Beck T. Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int. 2003; 14( Suppl 5): S818.
  • 35
    Fox J, Miller MA, Newman MK, Turner CH, Recker RR, Smith SY. Treatment of skeletally mature ovariectomized rhesus monkeys with PTH(1-84) for 16 months increases bone formation and density and improves trabecular architecture and biomechanical properties at the lumbar spine. J Bone Miner Res. 2007; 22: 26073.
  • 36
    Cabal A, Phillips E, Apreleva S, Jaykar R, McCracken P, Williams D, Duong LT. HRpQCT based finite element analysis to estimate bone strength at distal radius in odanacatib treated rhesus monkeys. J Bone Miner Res. 2009; 24(Suppl 1). Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=3b43a0ef-2069-4772-8499-484fef7e6288. Accessed December 12th 2011.
  • 37
    Bliziotes M, Sibonga JD, Turner RT, Orwoll E. Periosteal remodeling at the femoral neck in nonhuman primates. J Bone Miner Res. 2006; 21: 10607.
  • 38
    Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, Dasilva C, Santora AC, Ince BA. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010; 25: 93747.
  • 39
    Jerome C, Missbach M, Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2011 Feb 10 [Epub ahead of print].
  • 40
    Jee WS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 2011; 1: 193207.
  • 41
    Parfitt AM. The physiological and clinical significance of bone histomorphometric data. In: Recker RR, editor. Bone histomorphometry. Techniques and interpretations. Boca Raton (FL): CRC; 1983. p. 143223.
  • 42
    Allen MR, Burr DB. Skeletal microdamage: less about biomechanics and more about remodelling. Clinic Rev Bone Miner Metab. 2008; 6: 2430.
  • 43
    Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res. 1982; 4: 16.
  • 44
    Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. Are nonresorbing osteoclasts sources of bone anabolic activity?. J Bone Miner Res. 2007; 22: 48794.
  • 45
    Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2010; 48: 67792.
  • 46
    Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000; 88: 296178.
  • 47
    Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2000; 359: 184150.
  • 48
    Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008; 181: 123244.
  • 49
    Shi GP, Chapman HA, Bhairi SM, DeLeeuw C, Reddy VY, Weiss SJ. Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett. 1995; 357: 12934.
  • 50
    Mandelin J, Hukkanen M, Li TF, Korhonen M, Liljestrom M, Sillat T, Hanemaaijer R, Salo J, Santavirta S, Konttinen YT. Human osteoblasts produce cathepsin K. Bone. 2006; 38: 76977.
  • 51
    Lotinun S, Kiviranta I, Neff L, Vacher J, Vuorio E, Horne W, Sabatakos G, Baron R. Disruption of cathepsin K in the osteoclast lineage increased bone formation through coupling-dependent mechanism. J Bone Miner Res. 2009; 24(Suppl 1). Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=94c9aecc-91f4-4549-8e7e-3bf7aa23dd91. Accessed December 12th 2011.
  • 52
    Chow JW, Badve S, Chambers TJ. Bone formation is not coupled to bone resorption in a site-specific manner in adult rats. Anat Rec. 1993; 236: 36672.
  • 53
    Erben RG. Trabecular and endocortical bone surfaces in the rat: modeling or remodeling?. Anat Rec. 1996; 246: 3946.