• 1
    Wysolmerski JJ. The evolutionary origins of maternal calcium and bone metabolism during lactation. J Mammary Gland Biol Neoplasia. 2002; 7(3): 26776.
  • 2
    Sowers M, Eyre D, Hollis BW, Randolph JF, Shapiro B, Jannausch ML, Crutchfield M. Biochemical markers of bone turnover in lactating and nonlactating postpartum women. J Clin Endocrinol Metab. 1995; 80(7): 22106.
  • 3
    Vajda EG, Bowman BM, Miller SC. Cancellous and cortical bone mechanical properties and tissue dynamics during pregnancy, lactation, and postlactation in the rat. Biol Reprod. 2001; 65(3): 68995.
  • 4
    VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology. 2003; 144(12): 55219.
  • 5
    Sowers M, Corton G, Shapiro B, Jannausch ML, Crutchfield M, Smith ML, Randolph JF, Hollis B. Changes in bone density with lactation. JAMA. 1993; 269(24): 31305.
  • 6
    Kent GN, Price RI, Gutteridge DH, Allen JR, Barnes MP, Hickling CJ, Retallack RW, Wilson SG, Devlin RD, Price RI, Smith M, Bhagat CI, Davies C, St. Johns A. Human lactation: forearm trabecular bone loss, increased bone turnover, and renal conservation of calcium and inorganic phosphate with recovery of bone mass following weaning. J Bone Miner Res. 1990; 5(4): 3619.
  • 7
    Zeni SN, Di Gregorio S, Mautalen C. Bone mass changes during pregnancy and lactation in the rat. Bone. 1999; 25(6): 6815.
  • 8
    Ardeshirpour L, Dann P, Adams DJ, Nelson T, VanHouten J, Horowitz MC, Wysolmerski JJ. Weaning triggers a decrease in receptor activator of nuclear factor-kappaB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology. 2007; 148(8): 387586.
  • 9
    Miller SC, Bowman BM. Comparison of bone loss during normal lactation with estrogen deficiency osteopenia and immobilization osteopenia in the rat. Anat Rec. 1998; 251(2): 26574.
  • 10
    Bowman BM, Siska CC, Miller SC. Greatly increased cancellous bone formation with rapid improvements in bone structure in the rat maternal skeleton after lactation. J Bone Miner Res. 2002; 17(11): 195460.
  • 11
    Paton LM, Alexander JL, Nowson CA, Margerison C, Frame MG, Kaymakci B, Wark JD. Pregnancy and lactation have no long-term deleterious effect on measures of bone mineral in healthy women: a twin study. Am J Clin Nutr. 2003; 77(3): 70714.
  • 12
    Kojima N, Douchi T, Kosha S, Nagata Y. Cross-sectional study of the effects of parturition and lactation on bone mineral density later in life. Maturitas. 2002; 41(3): 2039.
  • 13
    Lenora J, Lekamwasam S, Karlsson MK. Effects of multiparity and prolonged breast-feeding on maternal bone mineral density: a community-based cross-sectional study. BMC Womens Health. 2009; 9: 19.
  • 14
    Melton LJ 3rd, Bryant SC, Wahner HW, O'Fallon WM, Malkasian GD, Judd HL, Riggs BL. Influence of breastfeeding and other reproductive factors on bone mass later in life. Osteoporos Int. 1993; 3(2): 7683.
  • 15
    Dursun N, Akin S, Dursun E, Sade I, Korkusuz F. Influence of duration of total breast-feeding on bone mineral density in a Turkish population: does the priority of risk factors differ from society to society?. Osteoporos Int. 2006; 17(5): 6515.
  • 16
    Lissner L, Bengtsson C, Hansson T. Bone mineral content in relation to lactation history in pre- and postmenopausal women. Calcif Tissue Int. 1991; 48(5): 31925.
  • 17
    Chowdhury S, Sarkar NR, Roy SK. Impact of lactational performance on bone mineral density in marginally-nourished Bangladeshi women. J Health Popul Nutr. 2002; 20(1): 2630.
  • 18
    Hopkinson JM, Butte NF, Ellis K, Smith EO. Lactation delays postpartum bone mineral accretion and temporarily alters its regional distribution in women. J Nutr. 2000; 130(4): 77783.
  • 19
    Wysolmerski JJ. Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation. Ann N Y Acad Sci. 2010; 1192: 1619.
  • 20
    Kovacs CS, Kronenberg HM. Maternal–fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev. 1997; 18(6): 83272.
  • 21
    Sowers MF, Hollis BW, Shapiro B, Randolph J, Janney CA, Zhang D, Schork A, Crutchfield M, Stanczyk F, Russell-Aulet M. Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA. 1996; 276(7): 54954.
  • 22
    Karlsson C, Obrant KJ, Karlsson M. Pregnancy and lactation confer reversible bone loss in humans. Osteoporos Int. 2001; 12(10): 82834.
  • 23
    Laskey MA, Prentice A. Bone mineral changes during and after lactation. Obstet Gynecol. 1999; 94(4): 60815.
  • 24
    Pearson D, Kaur M, San P, Lawson N, Baker P, Hosking D. Recovery of pregnancy mediated bone loss during lactation. Bone. 2004; 34(3): 5708.
  • 25
    Kirby BJ, Ardeshirpour L, Woodrow JP, Wysolmerski JJ, Sims NA, Karaplis AC, Kovacs CS. Skeletal recovery after weaning does not require PTHrP. J Bone Miner Res. 2011; 26(6): 124251.
  • 26
    Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcified Tissue Int. 1985; 37(6): 5947.
  • 27
    Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008; 23(2): 22335.
  • 28
    Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res. 2006; 21(10): 160817.
  • 29
    Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. 2009; 42(3): 24956.
  • 30
    Liu XS, Zhang XH, Guo XE. Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone. 2009; 45(2): 15863.
  • 31
    Saha PK, Chaudhuri BB. Detection of 3-D simple points for topology preserving. IEEE Trans Pattern Anal Mach Intell. 1994; 16(10): 102832.
  • 32
    Saha PK, Chaudhuri BB. 3D digital topology under binary transformation with applications. Comput Vis Image Underst. 1996; 63(3): 41829.
  • 33
    Saha PK, Chaudhuri BB, Chanda B, Dutta Majumder D. Topology preservation in 3D digital space. Pattern Recogn. 1994; 27: 295300.
  • 34
    Saha PK, Chaudhuri BB, Majumder DD. A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recogn. 1997; 30(12): 193955.
  • 35
    Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008; 42(6): 120313.
  • 36
    Stein EM, Liu XS, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Zhang C, Yin PT, Cosman F, Nieves J, Guo XE, Shane E. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res. 2010; 25(12): 2296305.
  • 37
    Melton LJ 3rd, Christen D, Riggs BL, Achenbach SJ, Muller R, van Lenthe GH, Amin S, Atkinson EJ, Khosla S. Assessing forearm fracture risk in postmenopausal women. Osteoporos Int. 2010; 21(7): 11619.
  • 38
    Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone. 2010; 46(4): 10307.
  • 39
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010; 25(7): 146886.
  • 40
    Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E, Guo XE. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010; 25(4): 74656.
  • 41
    Guo XE, Goldstein SA. Is trabecular bone tissue different from cortical bone tissue?. Forma. 1997; 12: 18596.
  • 42
    Liu XS, Cohen A, Shane E, Stein E, Rogers HF, Kokolus SL, Yin PT, McMahon DJ, Lappe JM, Recker RR, Guo XE. Individual trabeculae segmentation (ITS)-based morphological analyses of high resolution peripheral quantitative computed tomography images detect abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res. 2010; 25(7): 1486505.
  • 43
    Qing H, Ardeshirpour L, Dusevich V, Wysolmerski JJ, Bonewald LF. Osteocyte perilacunar remodeling is regulated hormonally, but not by mechanical unloading. J Bone Miner Res. 2009; 24( Suppl 1): S440.
  • 44
    Qing H, Divieti Pajevic P, Barry K, Dusevich V, Wysolmerski JJ, Bonewald LF. PTHR1 in osteocytes plays a major role in perilacunar remodeling through the activation of “osteoclastic” genes in osteocytes. J Bone Miner Res. 2010; 25( Suppl 1): S25.
  • 45
    Mulder L, Koolstra JH, den Toonder JM, van Eijden TM. Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone. Bone. 2007; 41(2): 25665.