SEARCH

SEARCH BY CITATION

Keywords:

  • LONGITUDINAL STUDY;
  • BONE GEOMETRY;
  • PHYSICAL ACTIVITY;
  • MEN;
  • BONE DENSITY

Abstract

Data supporting physical activity guidelines to optimize bone development in men is sparse. Peak bone mass is believed to be important for the risk of osteoporosis later in life. The objective of this study was to determine if an increased amount of physical activity over a 5-year period was associated with increased bone mineral content (BMC), areal (aBMD) and volumetric (vBMD) bone mineral density, and a favorable development of cortical bone size in young adult men. The original 1068 young men, initially enrolled in the Gothenburg Osteoporosis and Obesity Determinants (GOOD) study, were invited to participate in the longitudinal study, and a total of 833 men (78%), 24.1 ± 0.6 years of age, were included in the 5-year follow-up. A standardized self-administered questionnaire was used to collect information about patterns of physical activity at both the baseline and 5-year follow-up visits. BMC and aBMD were measured using dual energy X-ray absorptiometry, whereas vBMD and bone geometry were measured by peripheral quantitative computed tomography. Increased physical activity between the baseline and follow-up visits was associated with a favorable development in BMC of the total body, and aBMD of the lumbar spine and total hip (p < 0.001), as well as with development of a larger cortex (cortical cross sectional area), and a denser trabecular bone of the tibia (p < 0.001). In conclusion, increased physical activity was related to an advantageous development of aBMD, trabecular vBMD and cortical bone size, indicating that exercise is important in optimizing peak bone mass in young men. © 2012 American Society for Bone and Mineral Research.