SEARCH

SEARCH BY CITATION

References

  • 1
    Goodship AE, Lanyon LE, McFie H. Functional adaptation of bone in increased stress. J Bone Joint Surg. 1979; 61A: 53946.
  • 2
    Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985; 37: 4117.
  • 3
    Duda GN, Kirchner H, Wilke HJ, Claes L. A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement. J Biomech. 1998; 31(3): 24752.
  • 4
    Rittweger J, Beller G, Ehrig J, Jung C, Koch U, Ramolla J, Schmidt F, Newitt D, Majumdar S, Schiessl H, Felsenberg D. Bone-muscle strength indices for the human lower leg. Bone. 2000; 27(2): 31926.
  • 5
    Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007; 40(1): 1427.
  • 6
    Lorentzon M, Mellstrom D, Ohlsson C. Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD Study. J Bone Miner Res. 2005; 20: 193643.
  • 7
    Kohl HW, Fulton JE, Casperson C. Assessment of physical activity among children and adolescents: a review and synthesis. Prev Med. 2000; 31: S5476.
  • 8
    Mattocks C, Leary S, Ness A, Deere K, Saunders J, Tilling K, Kirkby J, Blair SN, Riddoch C. Calibration of an accelerometer during free-living activities in children. Int J Pediatr Obes. 2007; 2(4): 21826.
  • 9
    Sayers A, Mattocks C, Deere K, Ness A, Riddoch C, Tobias JH. Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J Clin Endocrinol Metab. 2011; 96(5): E793802.
  • 10
    Brage S, van Hees VT, Brage N. Intergeneration accelerometer differences and correction for on-board frequency-based filtering. J Appl Physiol. 2009; 106(4): 1473; author reply 1474.
  • 11
    Vainionpaa A, Korpelainen R, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int. 2006; 17(3): 45563.
  • 12
    Vainionpaa A, Korpelainen R, Sievanen H, Vihriala E, Leppaluoto J, Jamsa T. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone. 2007; 40(3): 60411.
  • 13
    Golding J, Pembrey M, Jones R. ALSPAC--the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr Perinat Epidemiol. 2001; 15(1): 7487.
  • 14
    Sayers A, Marcus M, Rubin C, McGeehin MA, Tobias JH. Investigation of sex differences in hip structure in peripubertal children. J Clin Endocrinol Metab. 2010; 95(8): 387683.
  • 15
    Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM. Bone density at various sites for prediction of hip fractures. Lancet. 1993; 341: 725.
  • 16
    MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002; 17: 83444.
  • 17
    McKay HA, MacLean L, Petit M, MacKelvie-O'Brien K, Janssen P, Beck T, Khan KM. “ Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005; 39(8): 5216.
  • 18
    Vainionpaa A, Korpelainen R, Vaananen HK, Haapalahti J, Jamsa T, Leppaluoto J. Effect of impact exercise on bone metabolism. Osteoporos Int. 2009; 20(10): 172533.
  • 19
    Babatunde OO, Forsyth JJ, Gidlow CJ. A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporos Int. 2012; 23(1): 10919.
  • 20
    Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009; 43(12): 89808.
  • 21
    Gracia-Marco L, Moreno LA, Ortega FB, León F, Sioen I, Kafatos A, Martinez-Gomez D, Widhalm K, Castillo MJ. Vicente-Rodríguez G; HELENA Study Group. Levels of physical activity that predict optimal bone mass in adolescents: the HELENA study. Am J Prev Med. 2011; 40(6): 599607.
  • 22
    Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002; 17(3): 36372.
  • 23
    Janz KF, Gilmore JM, Levy SM, Letuchy EM, Burns TL, Beck TJ. Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone. 2007; 41(2): 21622.
  • 24
    Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003; 18(5): 88592.
  • 25
    Riddoch CJ, Leary SD, Ness AR, Blair SN, Deere K, Mattocks C, Griffiths A, Davey-Smith G, Tilling K. Prospective associations between objective measures of physical activity and fat mass in 12-14 year old children: the Avon Longitudinal Study of Parents and Children (ALSPAC). BMJ. 2009; 339: b4544.
  • 26
    Clark EM, Ness AR, Tobias JH. Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab. 2006; 91(7): 253441.