SEARCH

SEARCH BY CITATION

References

  • 1
    Adami S, Giannini S, Giorgino R, Isaia GC, Maggi S, Sinigaglia L, Filipponi P, Crepaldi G. Effect of age, weight and lifestyle factors on calcaneal quantitative ultrasound in premenopausal women: the ESOPO Study. Calcif Tissue Int. 2004; 74: 31721.
  • 2
    Lunt M, Masaryk P, Scheidt-Nave C, Nijs J, Poor G, Pols H, Falch JA, Hammermeister G, Reid DM, Benevolenskaya L, Weber K, Cannata J, O'Neill TW, Felsenberg D, Silman AJ, Reeve J. The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: the EVOS Study. Osteoporos Int. 2001; 12: 68898.
  • 3
    Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004; 36(2): 27999.
  • 4
    Vasiliou V, Nebert DW. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics. 2005; 2(2): 13843.
  • 5
    Zakhari S. How is alcohol metabolized by the body? Alcohol Res Health. 2006; 29(4): 24554.
  • 6
    Yu SH, Oyama T, Isse T, Kitakawa K, Ogawa M, Pham TTP, Kawamoto T. Characteristics of aldehyde dehydrogenase 2 (Alsh2) knockout mice. Toxicol Mech Methods. 2009; 19(9): 53540.
  • 7
    Oyama T, Isse T, Kagawa N, Kinaga T, Kim YD, Morita M, Sugio K, Weiner H, Yasumoto K, Kawamoto T. Tissue-distribution of aldehyde dehydrogenase 2 and effects of the ALDH2 gene-disruption on the expression of enzymes involved in alcohol metabolism. Front Biosci. 2005; 10: 95160.
  • 8
    Yoshida A, Rzhetsky A, Hsu CL, Chang C. Human aldehyde dehydrogenase gene family. Eur J Biochem. 1998; 251: 54957.
  • 9
    Enomoto N, Takase S, Yasuhara M, Takada A. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcoholism. Clin Exp Res. 1991; 15(1): 1414.
  • 10
    Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. Structural and functional consequences of coenzyme binding to the inactive Asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J Biol Chem. 2007; 282(11): 1294050.
  • 11
    Kamino K, Nagasaka K, Imagawa M, Yamamoto H, Yoneda H, Ueki A, Kitamura S, Namekata K, Miki T, Ohta S. Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset Alzheimer's disease in the Japanese population. Biochem Biophys Res Commun. 2000; 273: 1926.
  • 12
    Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci. 2008; 28(24): 623949.
  • 13
    Ohsawa I, Nishimaki K, Yasuda C, Kamino K, Ohta S. Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells. J Neurochem. 2003; 84(5): 11107.
  • 14
    Yamaguchi J, Hasegawa Y, Kawasaki M, Masui T, Kanoh T, Ishiguro N, Hamajima N. ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos Int. 2006; 17(6): 90813.
  • 15
    Shimizu Y, Sakai A, Menuki K, Mori T, Isse T, Oyama T, Kawamoto T, Nakamura T. Reduced bone formation in alcohol-induced osteopenia is associated with elevated p21 expression in bone marrow cells in aldehyde dehydrogenase 2-disrupted mice. Bone. 2011; 48: 107586.
  • 16
    Himes R, Wezeman HF, Callaci JJ. Identification of novel bone-specific molecular targets of binge alcohol and ibandronate by transcriptome analysis. Alcohol Clin Exp Res. 2008; 32(7): 116780.
  • 17
    Sakata R. A case-control study of association between life-style, alcohol dehydrogenase 2 genotype and idiopathic osteonecrosis of the femoral head. Kurume Med J. 2003; 50: 12130.
  • 18
    Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, Matsuhashi T, Katsumata Y, Zhang Y, Ito H, Nagahata Y, Marchitti S, Nishimaki K, Wolf AM, Nakanishi H, Hattori F, Vasiliou V, Adachi T, Ohsawa I, Taguchi R, Hirabayashi Y, Ohta S, Suematsu M, Ogawa S, Fukuda K. Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res. 2009; 105: 111827.
  • 19
    Horn DA, Garrett IR. A novel method for embedding neonatal murine calvaria in methyl methacrylate suitable for visualizing mineralization, cellular and structural detail. Biotech Histochem. 2004; 79(3–4): 1518.
  • 20
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott S, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units: Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987; 2(6): 595610.
  • 21
    Iwasaki R, Ninomiya K, Miyamoto K, Suzuki T, Sato Y, Kawana H, Nakagawa T, Suda T, Miyamoto T. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity. Biochem Biophys Res Commun. 2008; 377(3): 899904.
  • 22
    Miyauchi Y, Ninomiya K, Miyamoto H, Sakamoto A, Iwasaki R, Hoshi H, Miyamoto K, Hao W, Yoshida S, Morioka H, Chiba K, Kato S, Tokuhisa T, Saitou M, Toyama Y, Suda T, Miyamoto T. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med. 2010; 207(4): 75162.
  • 23
    Tottmar SOC, Pettersson H, Kiessling K-H. The subcellular distribution and properties of aldehyde dehydrogenases in rat liver. Biochem J. 1973; 135: 57786.
  • 24
    Pikkarainen PH, Salaspuro MP, Lieber CS. A method for the determination of “free” acetaldehyde in plasma. Alcoholism Clin Exp Res. 1979; 3(3): 25961.
  • 25
    Fukunaga T, Kogame M, Adachi J, Ueno Y, Mizoi Y. Comparison of the methods for determination of acetaldehyde in human blood. Arukoru Kenkyuto Yakubutsu Ison. 1986; 21(1): 3442.
  • 26
    Vronneau M, Comte B, Rosiers CD. Quantitative gas chromatographic-mass spectrometric assay of 4-hydroxynonenal bound to thiol proteins in ischemic/reperfused rat hearts. Free Rad Biol Med. 2002; 33(10): 13808.
  • 27
    Shi Q, Vaillancourt F, Cote V, Fahmi H, Lavigne P, Afif HD, Battista JA, Fernandes JC, Benderdour M. Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal. Arth Res Ther. 2006; 8(6): 114.
  • 28
    Liu Q, Raina AK, Smith MA, Sayre LM, Perry G. Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Mol Aspects Med. 2003; 24: 30513.
  • 29
    Giulivi C, Cadenas E. Inhibition of protein radical reactions of ferrylmyoglobin by the water-soluble analog of vitamin E, trolox C. Arch Biochem Biophys. 1993; 303(1): 1528.
  • 30
    Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN. Vitamin E exhibits bone anabolic actions in normal male rats. J Bone Miner Metab. 2010; 28: 14956.
  • 31
    Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development. 2009; 136: 1093104.
  • 32
    Afzal F, Pratap Ji, Ito K, Ito Y, Stein JL, Wijnen AJ, Stein GS, Lian JB, Javed A. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physol. 2005; 204: 6372.
  • 33
    Gersbach CA, Guldberg RE, García AJ. In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts. J Cell Biochem. 2007; 100: 132436.
  • 34
    Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009; 5: 4427.
  • 35
    Takada I, Kouzmenko AP, Kato S. Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opin Ther Targets. 2009; 13(5): 593603.
  • 36
    Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, Kim SY, Shin CS. Activation of peroxisome proliferator-activated receptor inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem. 2003; 278(26): 232707.
  • 37
    Takeshita T, Morimoto K, Mao XQ, Hashimoto T, Furuyama J. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Hum Genet. 1994; 94: 21723.
  • 38
    Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H. Mitochondrial ALDH2 deficiency as an oxidative stress. Ann N Y Acad Sci. 2004; 1011: 3644.
  • 39
    Guo Y, Tan LJ, Lei SF, Yang TL, Chen XD, Zhang F, Chen Y, Pan F, Yan H, Liu X, Tian Q, Zhang ZX, Zhou Q, Qiu C, Dong SS, Xu XH, Guo YF, Zhu XZ, Liu SL, Wang XL, Li X, Luo Y, Zhang LS, Li M, Wang JT, Wen T, Drees B, Hamilton J, Papasian CJ, Recker RR, Song XP, Cheng J, Deng HW. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. Plos Genet. 2010; 6(1): 18.