Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways

Authors

  • Yukiko Kitase,

    1. Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO, USA
    2. Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
    Search for more papers by this author
  • Leonardo Barragan,

    1. Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO, USA
    Search for more papers by this author
  • Hai Qing,

    1. Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO, USA
    Search for more papers by this author
  • Shino Kondoh,

    1. Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO, USA
    2. Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
    Search for more papers by this author
  • Jean X Jiang,

    1. Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
    Search for more papers by this author
  • Mark L Johnson,

    Corresponding author
    1. Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO, USA
    • Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO 64108-2784, USA.
    Search for more papers by this author
  • Lynda F Bonewald

    1. Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO, USA
    Search for more papers by this author

Abstract

Glucocorticoids are known to induce osteocyte apoptosis, whereas mechanical loading has been shown to sustain osteocyte viability. Here we show that mechanical loading in the form of fluid-flow shear stress blocks dexamethasone-induced apoptosis of osteocyte-like cells (MLO-Y4). Prostaglandin E2 (PGE2), a rapidly induced signaling molecule produced by osteocytes, was shown to be protective against dexamethasone-induced apoptosis, whereas indomethacin reversed the antiapoptotic effects of shear stress. This protective effect of shear stress was mediated through EP2 and EP4 receptors, leading to activation of the cAMP/protein kinase A signaling pathway. Activation of phosphatidylinositol 3-kinase, an inhibitor of glycogen synthesis kinase 3, also occurred, leading to the nuclear translocation of β-catenin, an important signal transducer of the Wnt signaling pathway. Both shear stress and prostaglandin increased the phosphorylation of glycogen synthesis kinase 3 α/β. Lithium chloride, an activator of the Wnt pathway, also was protective against glucocorticoid-induced apoptosis. Whereas it is known that mechanical loading increases cyclooxygenase-2 and EP2 receptor expression and prostaglandin production, dexamethasone was shown to inhibit expression of these components of the prostaglandin pathway and to reduce β-catenin protein expression. β-catenin siRNA knockdown experiments abrogated the protective effects of PGE2, confirming the central role of β-catenin in mediating the protection against dexamethasone-induced cell death. Our data support a central role for PGE2 acting through the cAMP/PKA and β-catenin signaling pathways in the protection of osteocyte apoptosis by fluid-flow shear stress. © 2010 American Society for Bone and Mineral Research.

Ancillary