• 1
    Knothe Tate ML.Whither flows the fluid in bone?” An osteocyte's perspective. J Biomech. 2003;36(10):140924.
  • 2
    Tami A, Schaffler MB, Knothe Tate ML. Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology. 2003;40(6):57790.
  • 3
    Pollack SR, Salzstein R, Pienkowski D. Streaming potentials in fluid-filled bone. Ferroelectrics. 1984;60:297309.
  • 4
    Gross D, Williams WS. Streaming potential and the electromechanical response of physiologically-moist bone. J Biomech. 1982;15(4):27795.
  • 5
    Eriksson C. Steaming potentials and other water-dependent effects in mineralized tissues. Ann N Y Acad Sci. 1974;238:32138.
  • 6
    Gardinier JD, Townend CW, Jen KP, Wu Q, Duncan RL, Wang L. In situ permeability measurement of the mammalian lacunar-canalicular system. Bone. 2010;46(4):107581.
  • 7
    Li GP, Bronk JT, An KN, Kelly PJ. Permeability of cortical bone in canine tibiae. Microvasc Res. 1987;34(3):30210.
  • 8
    Knothe Tate ML, Steck R, Anderson EJ. Bone as an inspiration for a novel class of mechanoactive materials. Biomaterials. 2009;30(2):13340.
  • 9
    Qin YX, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech. 2003;36(10):142737.
  • 10
    Evans SF, Knothe Tate ML. Elucidating multiscale periosteal mechanobiology: a key to unlocking the regenerative capacity of the periosteum? Tissue Eng Part B Rev. 2013, in press.
  • 11
    Knothe Tate ML. Smart body armor inspired by flow in bone. Smart Struct Syst. 2011;7(3):2238.
  • 12
    Amsdorf EJ, Jones LM, Carter DR, Jacobs CR. The periosteum as a cellular source for functional tissue engineering. Tissue Eng Part A., 2009;15(9):263742.
  • 13
    Chang H, Knothe Tate ML. The periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012;1:48091.
  • 14
    de Mara CS, Sartori AR, Duarte AS, Andrade ALL, Pedro MAC, Coimbra IB. Periosteum as a source of mesenchymal stem cells: the effects of TGF-β3 on chondrogenesis. Clinics. 2011;66(3):48792.
  • 15
    Brookes M, Revell WJ. Blood supply of bone: scientific aspects. 1st rev editor. London: Springer; 1998. 359 p.
  • 16
    Foolen J, van Donkelaar CC, Nowlan N, Murphy P, Huiskes R, Ito K. Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth. J Orthop Res. 2008;26(9):12638.
  • 17
    Allen MR, Burr DB. Human femoral neck has less cellular periosteum, and more mineralized periosteum, than femoral diaphyseal bone. Bone. 2005;36(2):3116.
  • 18
    Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004;35(5):100312.
  • 19
    Evans SF, Docheva D, Bernecker A, Colnot CC, Richter RP, Knothe Tate ML. Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials. 2013;34(8):187887.
  • 20
    McBride SH, Evans SF, Knothe Tate ML. Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation. J Biomech. 2011;44(10):19549.
  • 21
    Knothe Tate ML, Dolejs S, Miller RM, Knothe UR. Role of mechanical loading in healing of massive bone autografts. J Orthop Res. 2010;28(12):165764.
  • 22
    Knothe Tate ML, Dolejs S, McBride S, Miller RM, Knothe UR. Multiscale mechanobiology of de novo bone generation as well as remodeling and adaptation of autograft–an integrative review. J Mech Behav Biomed Mater. 2011;4(6):82940.
  • 23
    McBride SH, Dolejs S, Brianza S, Knothe U, Knothe Tate ML. Net change in periosteal strain during stance shift loading after surgery correlates to rapid de novo bone generation in critically sized defects. Ann Biomed Eng. 2011;39(5):157081.
  • 24
    Knothe Tate ML, Ritzman TF, Schneider E, Knothe UR. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am. 2007;89(2):30716.
  • 25
    Knothe UR, Dolejs S, Miller RM, Knothe Tate ML. Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing. J Biomech. 2010;43(14):272837.
  • 26
    Knothe Tate ML, Chang H, Moore SR, Knothe UR. Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model. PLoS One. 2011;6(12):e28702.
  • 27
    Beno T, Yoon YJ, Cowin SC, Fritton SP. Estimation of bone permeability using accurate microstructural measurements. J Biomech. 2006;39(13):237887.
  • 28
    Kameo Y, Adachi T, Sato N, Hojo M. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity. J Mech Behav Biomed Mater. 2010;3(3):2408.
  • 29
    Gailani G, Benalla M, Mahamud R, Cowin SC, Cardoso L. Experimental determination of the permeability in the lacunar-canalicular porosity of bone. J Biomech Eng. 2009;131(10):101007.
  • 30
    Anderson EJ, Kreuzer SM, Small O, Knothe Tate ML. Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid Nanofluidics. 2008;4(3):193204.
  • 31
    Lemaire T, Lemonnier S, Naili S. On the paradoxical determinations of the lacuno-canalicular permeability of bone. Biomech Model Mechanobiol. 2012;11(7):93346.
  • 32
    Christensen DA. Chapter 2: Darcy's Law: pressure-driven transport through membranes. Introduction to biomedical engineering: biomechanics and bioelectricity, part 1. Synthesis Lectures on Biomedical Engineering. 2009;4(1):1727. DOI: 10.2200/S00182ED1V01Y200903BME028.
  • 33
    Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH. Bi-directional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc. 1973;10(0):24762.
  • 34
    Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, Agol VI. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol. 2004;78(18):1016677.
  • 35
    Wang Q, Rager JD, Weinstein W, Kardos PS, Dobson GL, Li J, Hidalgo IJ. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm. 2005;288(2):34959.
  • 36
    Ensminger M, Parker R. Sheep and goat science 5th editor. Danville, IL: The Interstate Printers & Publishers Inc; 1986.
  • 37
    Oklahoma State University. Breeds of Livestock. Sheep. Dorset [Internet]. Stillwater, OK: Department of Animal Science, Oklahoma State University; 1997 [cited 2012 Oct 2]. Available from:
  • 38
    Queensland Schools Animal Ethics Committee. Species-Specific Information—Sheep [Internet]. Department of Education, Training and Employment, Queensland, Australia [cited 2012 Oct 2]. Available from:
  • 39
    Lanyon LE, Paul IL, Rubin CT, Thrasher EL, DeLaura R, Rose RM, Radin EL. In vivo strain measurements from bone and prosthesis following total hip replacement. An experimental study in sheep. J Bone Joint Surg Am. 1981;63(6):9891001.
  • 40
    Reichert IL, McCarthy ID, Hughes SP. The acute vascular response to intramedullary reaming. Microsphere estimation of blood flow in the intact ovine tibia. J Bone Joint Surg Br. 1995;77(3):4903.
  • 41
    Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine. MomentMacro [Internet]. Baltimore, MD: Johns Hopkins University School of Medicine; 1997 Apr 4 [updated 2006 Jul 21; cited 2012 Oct 2]. Available from:
  • 42
    Cavanaugh KJ J Jr, Oswari J, Margulies SS. Role of stretch on tight junction structure in alveolar epithelial cells. Am J Respir Cell Mol Biol. 2001;25(5):58491.
  • 43
    McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE. Occludin is a functional component of the tight junction. J Cell Sci. 1996;109 Pt 9 228798.
  • 44
    Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol. 2005;288(6):C123141.
  • 45
    Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2011;301(1):L409.
  • 46
    Anderson JM. Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci. 2001;16:12630.
  • 47
    Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001;24(12):71925.
  • 48
    Phelps JE, DePaola N. Spatial variations in endothelial barrier function in distributed flows in vitro. Am J Physiol Heart Circ Physiol. 2000;278(2):H46976.
  • 49
    Lemonnier S, Lemaire T, Naili S, Knothe Tate ML. Periosteum's intrinsic permeability depends on anatomic sampling site perfusate osmolarity. Trans ORS. 2013;38:770.
  • 50
    Foolen J, van Donkelaar CC, Murphy P, Huiskes R, Ito K. Residual periosteum tension is insufficient to directly modulate bone growth. J Biomech. 2009;42(2):1527.
  • 51
    Wen D, Androjna C, Vasanji A, Belovich J, Midura RJ. Lipids and collagen matrix restrict the hydraulic permeability within the porous compartment of adult cortical bone. Ann Biomed Eng. 2010;38(3):55869.
  • 52
    Federico S, Herzog W. On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech Model Mechanobiol. 2008;7(5):36778.
  • 53
    Knothe Tate ML, Tami AE, Netrebko P, Milz S, Docheva D. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system. Technol Health Care. 2012;20(5):36378.
  • 54
    Wilson W, van Donkelaar CC, van Rietbergen R, Huiskes R. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys. 2005;27(10):81026.
  • 55
    Weiss JA, Maakestad BJ. Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction. J Biomech. 2006;39(2):27683.
  • 56
    Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 1980;17(1–2):11123.
  • 57
    Lai WM, Mow VC, Roth V. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J Biomech Eng. 1981;103(2):616.
  • 58
    Romero-Suarez S, Mo CL, Lara N, Jaehn K, Johnson ML, Bonewald LF, Brotto M. The β-catenin activating factor, Wnt3a, stimulates skeletal muscle myogenesis. 2011 Annual Meeting of The American Society for Bone and Mineral Research;. 2011 Sep 16–20 San Diego, CA. SA0005.
  • 59
    Moore SR, Milz S, Knothe Tate ML. Relation of human periosteal thickness and cellularity to loading history. Trans ORS. 2013;38:733.
  • 60
    Rodríguez-Merchán EC. Pediatric skeletal trauma: a review and historical perspective. Clin Orthop Relat Res. 2005; (432): 813.
  • 61
    Mercurio AD, Motta T, Green E, Noble G, Hart RT, Allen MJ. Effects of extensive circumferential periosteal stripping on the microstructure and mechanical properties of the murine femoral cortex. J Orthop Res. 2012 Apr; 30(4):5618.
  • 62
    Tsui YK, Gogolewski S. Microporous biodegradable polyurethane membranes for tissue engineering. J Mater Sci Mater Med. 2009;20(8):172941.