Lower fracture risk in older men with higher sclerostin concentration: A prospective analysis from the MINOS study

Authors


Abstract

Sclerostin is synthesized by osteocytes and inhibits bone formation. We measured serum sclerostin levels in 710 men aged 50 years and older. Bone mineral density (BMD) was measured at the lumbar spine, hip, and distal forearm. Serum sclerostin increased with age (unadjusted r = 0.30, p < 0.001). After adjustment for age, weight, and bioavailable 17β-estradiol, serum sclerostin correlated positively with BMD (r = 0.24 to 0.35, p < 0.001) and negatively with the levels of bone turnover markers (r = − 0.09 to − 0.23, p < 0.05 to 0.001). During a 10-year follow-up, 75 men sustained fragility fractures. Fracture risk was lower in the two upper quintiles of sclerostin combined versus three lower quintiles combined (6.1 versus 13.5%, p < 0.01). We compared fracture risk in the two highest quintiles combined versus three lower quintiles combined using the Cox model adjusted for age, weight, leisure physical activity, BMD, bone width (tubular bones), prevalent fracture, prevalent falls, ischemic heart disease, and severe abdominal aortic calcification. Men with higher sclerostin concentration had lower fracture risk (adjusted for hip BMD, hazard ratio [HR] = 0.55, 95% confidence interval [CI] 0.31 to 0.96, p < 0.05). The results were similar in 47 men with major fragility fractures (adjusted for lumbar spine BMD: HR = 0.39, 95% CI 0.17 to 0.90, p < 0.05). Men who had higher sclerostin and higher BMD (two highest quintiles) had lower risk of fracture compared with men who had lower BMD and lower sclerostin levels (three lower quintiles) (HR = 0.24, 95% CI 0.10 to 0.62, p < 0.005). Circulating sclerostin was not associated with mortality rate or the incidence of major cardiovascular events. Thus, in older men, higher serum sclerostin levels are associated with lower risk of fracture, higher BMD, and lower bone turnover rate. © 2013 American Society for Bone and Mineral Research.

Ancillary