• 1
    Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr Rev. 1997; 18:83272.
  • 2
    Kovacs CS. Control of skeletal homeostasis during pregnancy and lactation: lessons from physiological models. In: Thakker RV, Whyte MP, Eisman JA, Igarashi T, editors. Genetics of bone biology and skeletal disease. San Diego: Academic Press/Elsevier; p. 22140. 2012.
  • 3
    Kovacs CS., The role of vitamin D in pregnancy and lactation: insights from animal models and clinical studies. Ann Rev Nutr. 2012; 32:9.127.
  • 4
    Halloran BP, DeLuca HF. Calcium transport in small intestine during pregnancy and lactation. Am J Physiol. 1980; 239:E648.
  • 5
    Brommage R, Baxter DC, Gierke LW. Vitamin D-independent intestinal calcium and phosphorus absorption during reproduction. Am J Physiol. 1990; 259:G6318.
  • 6
    Fudge NJ, Kovacs CS. Pregnancy up-regulates intestinal calcium absorption and skeletal mineralization independently of the vitamin D receptor. Endocrinology. 2010; 151(3):88695.
  • 7
    Lachenmaier-Currle U, Breves G, Harmeyer J. Role of 1,25-(OH)2D3 during pregnancy; studies with pigs suffering from pseudo-vitamin D-deficiency rickets, type I. Q J Exp Physiol. 1989; 74(6):87581.
  • 8
    Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Oh GT, Jeung EB, Lieben L, Bouillon R, Carmeliet G, Christakos S. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008; 149(6):3196205.
  • 9
    Kovacs CS. Fetus, neonate and infant. In: Feldman D, Pike WJ, Adams JS, editors. Vitamin D. 3rd ed. New York: Academic Press; p. 62546. 2011.
  • 10
    Wysolmerski JJ. Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation. Ann N Y Acad Sci. 2010; 1192:1619.
  • 11
    Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res. 1996; 11:105260.
  • 12
    Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, Kovacs CS. Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation. Endocrinology. 2006; 147:401021.
  • 13
    Kirby BJ, Ardeshirpour L, Woodrow JP, Wysolmerski JJ, Sims NA, Karaplis AC, Kovacs CS. Skeletal recovery after weaning does not require PTHrP. J Bone Miner Res. 2011; 26(6):124251.
  • 14
    Miller SC, Bowman BM. Rapid inactivation and apoptosis of osteoclasts in the maternal skeleton during the bone remodeling reversal at the end of lactation. Anat Rec (Hoboken). 2007; 290(1):6573.
  • 15
    Vajda EG, Bowman BM, Miller SC. Cancellous and cortical bone mechanical properties and tissue dynamics during pregnancy, lactation, and postlactation in the rat. Biol Reprod. 2001; 65(3):68995.
  • 16
    Collins JN, Kirby BJ, Woodrow JP, Gagel RF, Rosen CJ, Sims NA, Kovacs CS. Lactating Ctcgrp nulls lose twice normal bone mineral content due to fewer osteoblasts and more osteoclasts, while bone mass is fully restored post-weaning in association with upregulation of Wnt signaling and other novel genes. Endocrinology. Epub 2013 Mar 5. DOI: 10.1210/en.2012-1931
  • 17
    VanHouten JN, Dann P, Stewart AF, Watson CJ, Pollak M, Karaplis AC, Wysolmerski JJ. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest. 2003; 112(9):142936.
  • 18
    Ardeshirpour L, Dann P, Pollak M, Wysolmerski J, VanHouten J. The calcium-sensing receptor regulates PTHrP production and calcium transport in the lactating mammary gland. Bone. 2006; 38(6):78793.
  • 19
    VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004; 113(4):598608.
  • 20
    VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology. 2003; 144(12):55219.
  • 21
    Liu XS, Ardeshirpour L, VanHouten JN, Shane E, Wysolmerski JJ. Site-specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice. J Bone Miner Res. 2012; 27(4):86575.
  • 22
    Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, Wysolmerski J, Bonewald LF. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012; 27(5):101829.
  • 23
    Miller SC, Anderson BL, Bowman BM. Weaning initiates a rapid and powerful anabolic phase in the rat maternal skeleton. Biol Reprod. 2005; 73(1):15662.
  • 24
    Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009; 44(1):116.
  • 25
    Kovacs CS. Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol Metab Clin North Am. 2011; 40(4):795826.
  • 26
    Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P. PTH-related protein is released into the mother's bloodstream during location: evidence for beneficial effects on maternal calcium-phosphate metabolism. J Bone Miner Res. 1996; 11:13949.
  • 27
    Ardeshirpour L, Brian S, Dann P, Vanhouten J, Wysolmerski J. Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton. Endocrinology. 2010; 151(12):5591601.
  • 28
    Liu X, Shimono K, Zhu LL, Li J, Peng Y, Imam A, Iqbal J, Moonga S, Colaianni G, Su C, Lu Z, Iwamoto M, Pacifici M, Zallone A, Sun L, Zaidi M. Oxytocin deficiency impairs maternal skeletal remodeling. Biochem Biophys Res Commun. 2009; 388(1):1616.
  • 29
    Breier BH, Milsom SR, Blum WF, Schwander J, Gallaher BW, Gluckman PD. Insulin-like growth factors and their binding proteins in plasma and milk after growth hormone-stimulated galactopoiesis in normally lactating women. Acta Endocrinol. 1993; 129(5):42735.
  • 30
    Vicini JL, Buonomo FC, Veenhuizen JJ, Miller MA, Clemmons DR, Collier RJ. Nutrient balance and stage of lactation affect responses of insulin, insulin-like growth factors I and II, and insulin-like growth factor-binding protein 2 to somatotropin administration in dairy cows. J Nutr. 1991; 121(10):165664.
  • 31
    Qing H, Andresirpour L, Dusecich V, Dallas M, Wysolmerski JJ, Bonewald LF. Osteocytic perilacunar remodeling as a significant source of calcium during lactation [Abstract]. J Bone Miner Res. 2008; 23(Suppl):S401.
  • 32
    Qing H, Bonewald LF. Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int J Oral Sci. 2009; 1(2):5965.
  • 33
    Kovacs CS, El-Hajj Fuleihan G. Calcium and bone disorders during pregnancy and lactation. Endocrinol Metab Clin North Am. 2006; 35(1):2151.
  • 34
    Wysolmerski JJ. Conversations between breast and bone: physiological bone loss during lactation as evolutionary template for osteolysis in breast cancer and pathological bone loss after menopause. Bonekey Osteovision. 2007; 4(8):20925.
  • 35
    Chantry CJ, Auinger P, Byrd RS. Lactation among adolescent mothers and subsequent bone mineral density. Arch Pediatr Adolesc Med. 2004; 158(7):6506.
  • 36
    Phillips AJ, Ostlere SJ, Smith R. Pregnancy-associated osteoporosis: does the skeleton recover?. Osteoporos Int. 2000; 11(5):44954.
  • 37
    Dunne F, Walters B, Marshall T, Heath DA. Pregnancy associated osteoporosis. Clin Endocrinol (Oxf). 1993; 39:48790.
  • 38
    Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997; 20(6):54751.
  • 39
    Holick MF. Perspective on the impact of weightlessness on calcium and bone metabolism. Bone. 1998; 22(5 Suppl):105S11S.
  • 40
    Tilton FE, Degioanni JJ, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med. 1980; 51(11):120913.
  • 41
    Hermus AR, Smals AG, Swinkels LM, Huysmans DA, Pieters GF, Sweep CF, Corstens FH, Kloppenborg PW. Bone mineral density and bone turnover before and after surgical cure of Cushing's syndrome. J Clin Endocrinol Metab. 1995; 80(10):285965.
  • 42
    Lufkin EG, Wahner HW, O'Fallon WM, Hodgson SF, Kotowicz MA, Lane AW, Judd HL, Caplan RH, Riggs BL. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med. 1992; 117(1):19.
  • 43
    Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000; 15(6):9931000.
  • 44
    Reid IR. Menopause. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th ed. Washington, DC: ASBMR Press; p. 869. 2003.
  • 45
    Gallagher JC. Effect of estrogen on bone. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th ed. Washington, DC: ASBMR Press; p. 3270. 2003.
  • 46
    Specker BL, Tsang RC, Ho ML. Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet Gynecol. 1991; 78:5662.
  • 47
    Cross NA, Hillman LS, Allen SH, Krause GF, Vieira NE. Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr. 1995; 61:51423.
  • 48
    Krause C, Gorter DJ, Karperien M, ten Dijke P. Signal transduction cascades controlling osteoblast differentiation. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, DC: ASBMR Press; p. 106. 2008.
  • 49
    Cosman F, Greenspan SL. Parathyroid hormone treatment for osteoporosis. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, DC: ASBMR Press; p. 2449. 2008.
  • 50
    Nissenson RA, Jüppner H. Parathyroid hormone. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, DC: ASBMR Press; p. 1237. 2008.
  • 51
    Wysolmerski JJ. Parathyroid hormone-related protein. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, DC: ASBMR Press; p. 12733. 2008.
  • 52
    Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest. 2002; 109(9):117382.
  • 53
    Sharpe CJ, Fudge NJ, Kovacs CS. A rapid 35% flux in bone mass occurs during pregnancy and lactation cycles in mice [Abstract]. International Bone and Mineral Society Meeting, Osaka, Japan, June 3–7, 2003. Bone. 2003; 32(Suppl):S227.
  • 54
    Simmonds CS, Karsenty G, Karaplis AC, Kovacs CS. Parathyroid hormone regulates fetal-placental mineral homeostasis. J Bone Miner Res. 2010; 25(3):594605.
  • 55
    Kovacs CS, Chafe LL, Fudge NJ, Friel JK, Manley NR. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology. 2001; 142(11):498393.
  • 56
    Kovacs CS, Manley NR, Moseley JM, Martin TJ, Kronenberg HM. Fetal parathyroids are not required to maintain placental calcium transport. J Clin Invest. 2001; 107(8):100715.
  • 57
    Kovacs CS, Woodland ML, Fudge NJ, Friel JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer. Am J Physiol Endocrinol Metab. 2005; 289(1):E13344.
  • 58
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008; 3(6):11018.
  • 59
    Buckle K, Fudge NJ, Karaplis AC, Kovacs CS. Parathyroid hormone (PTH) is not required to restore skeletal mineral that was lost during lactation [Abstract]. J Bone Miner Res. 2004; 19(Suppl):S192.
  • 60
    Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999; 140(11):49827.
  • 61
    Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010; 61:91104.
  • 62
    Hori M, Shimizu Y, Fukumoto S. Minireview: fibroblast growth factor 23 in phosphate homeostasis and bone metabolism. Endocrinology. 2011; 152(1):410.
  • 63
    Marsell R, Jonsson KB. The phosphate regulating hormone fibroblast growth factor-23. Acta Physiol (Oxf). 2010; 200(2):97106.
  • 64
    Woodrow JP. Calcitonin modulates skeletal mineral loss during lactation through interactions in mammary tissue and directly though osteoclasts in bone [dissertation]. St. John's, Newfoundland, Canada: Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland; 2009. 227 p.
  • 65
    Ardeshirpour L, Dann P, Adams DJ, Nelson T, VanHouten J, Horowitz MC, Wysolmerski JJ. Weaning triggers a decrease in receptor activator of nuclear factor-kappaB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology. 2007; 148(8):38756.
  • 66
    Sweeney LL, Malabanan AO, Rosen H. Decreased calcitriol requirement during pregnancy and lactation with a window of increased requirement immediately post partum. Endocr Pract. 2010; 16(3):45962.
  • 67
    Kolthoff N, Eiken P, Kristensen B, Nielsen SP. Bone mineral changes during pregnancy and lactation: a longitudinal cohort study. Clin Sci (Lond). 1998; 94(4):40512.
  • 68
    Polatti F, Capuzzo E, Viazzo F, Colleoni R, Klersy C. Bone mineral changes during and after lactation. Obstet Gynecol. 1999; 94(1):526.
  • 69
    Kalkwarf HJ, Specker BL, Bianchi DC, Ranz J, Ho M. The effect of calcium supplementation on bone density during lactation and after weaning. N Engl J Med. 1997; 337(8):5238.
  • 70
    Cross NA, Hillman LS, Allen SH, Krause GF. Changes in bone mineral density and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. J Bone Miner Res. 1995; 10:131220.
  • 71
    Brommage R, DeLuca HF. Regulation of bone mineral loss during lactation. Am J Physiol. 1985; 248:E1827.
  • 72
    Bikle DD, Gee E, Halloran B, Haddad JG. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J Clin Invest. 1984; 74:196671.
  • 73
    Horwitz MJ, Tedesco MB, Sereika SM, Hollis BW, Garcia-Ocana A, Stewart AF. Direct comparison of sustained infusion of human parathyroid hormone-related protein-(1-36). J Clin Endocrinol Metab. 2003; 88(4):16039.
  • 74
    Horwitz MJ, Tedesco MB, Sereika SM, Syed MA, Garcia-Ocana A, Bisello A, Hollis BW, Rosen CJ, Wysolmerski JJ, Dann P, Gundberg C, Stewart AF. Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25(OH)2 vitamin D. J Bone Miner Res. 2005; 20(10):1792803.
  • 75
    Gray TK, Lester GE, Lorenc RS. Evidence for extra-renal 1 α-hydroxylation of 25-hydroxyvitamin D3 in pregnancy. Science. 1979; 204:13113.
  • 76
    Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, Hewison M. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab. 2001; 86(2):88894.
  • 77
    Diaz L, Sanchez I, Avila E, Halhali A, Vilchis F, Larrea F. Identification of a 25-hydroxyvitamin D3 1alpha-hydroxylase gene transcription product in cultures of human syncytiotrophoblast cells. J Clin Endocrinol Metab. 2000; 85(7):25439.
  • 78
    Weisman Y, Harell A, Edelstein S, David M, Spirer Z, Golander A. 1 alpha, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature. 1979; 281(5729):3179.
  • 79
    Tanaka Y, Halloran B, Schnoes HK, DeLuca HF. In vitro production of 1,25-dihydroxyvitamin D3 by rat placental tissue. Proc Natl Acad Sci U S A. 1979; 76:50335.
  • 80
    Weisman Y, Vargas A, Duckett G, Reiter E, Root AW. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978; 103:19926.
  • 81
    Blum M, Weisman Y, Turgeman S, Cabili S, Wollman Y, Peer G, Stern N, Silverberg D, Schwartz D, Iaina A. Pregnancy decreases immunoreactive parathyroid hormone level in rats with chronic renal failure. Clin Sci (Lond). 1999; 96(4):42730.
  • 82
    Lachenmaier-Currle U, Harmeyer J. Placental transport of calcium and phosphorus in pigs. J Perinat Med. 1989; 17:12736.
  • 83
    Turner M, Barre PE, Benjamin A, Goltzman D, Gascon-Barre M. Does the maternal kidney contribute to the increased circulating 1,25-dihydroxyvitamin D concentrations during pregnancy?. Miner Electrolyte Metab. 1988; 14:24652.
  • 84
    Danan JL, Delorme AC, Mathieu H. Presence of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 24-hydroxylase in vitamin D target cells of rat yolk sac. J Biol Chem. 1982; 257(18):1071521.
  • 85
    Avila E, Diaz L, Halhali A, Larrea F. Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase, 1,25-dihydroxyvitamin D3 24-hydroxylase and vitamin D receptor gene expression by 8-bromo cyclic AMP in cultured human syncytiotrophoblast cells. J Steroid Biochem Mol Biol. 2004; 89–90(1–5):1159.
  • 86
    Petkovich M, Jones G. CYP24A1 and kidney disease. Curr Opin Nephrol Hypertens. 2011; 20(4):33744.
  • 87
    Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, Beck S, Fournier T, Evain-Brion D, Dimitriadis E, Craig JM, Morley R, Saffery R. Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem. 2009; 284(22):1483848.
  • 88
    Evans KN, Bulmer JN, Kilby MD, Hewison M. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004; 11(5):26371.
  • 89
    Liu NQ, Hewison M. Vitamin D, the placenta and pregnancy. Arch Biochem Biophys. 2012 Jul 1; 523(1):3747.
  • 90
    Rubin LP, Yeung B, Vouros P, Vilner LM, Reddy GS. Evidence for human placental synthesis of 24,25-dihydroxyvitamin D3 and 23,25-dihydroxyvitamin D3. Pediatr Res. 1993; 34(1):98104.
  • 91
    Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978; 9:292300.
  • 92
    Lester GE, Gray TK, Lorenc RS. Evidence for maternal and fetal differences in vitamin D metabolism. Proc Soc Exp Biol Med. 1978; 159(2):3037.
  • 93
    Paulson SK, Langman CB. Plasma vitamin D metabolite levels in pregnant and nonpregnant ewes. Comp Biochem Physiol A. 1990; 96:3479.
  • 94
    Delvin EE, Glorieux FH, Salle BL, David L, Varenne JP. Control of vitamin D metabolism in preterm infants: feto-maternal relationships. Arch Dis Child. 1982; 57:7547.
  • 95
    Higashi T, Mitamura K, Ohmi H, Yamada N, Shimada K, Tanaka K, Honjo H. Levels of 24,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 3-sulphate in human plasma. Ann Clin Biochem. 1999; 36(Pt 1):437.
  • 96
    Zierold C, Reinholz GG, Mings JA, Prahl JM, DeLuca HF. Regulation of the porcine 1,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 and parathyroid hormone in AOK-B50 cells. Arch Biochem Biophys. 2000; 381(2):3237.
  • 97
    Shinki T, Jin CH, Nishimura A, Nagai Y, Ohyama Y, Noshiro M, Okuda K, Suda T. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1 alpha,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992; 267(19):1375762.
  • 98
    Reinhardt TA, Horst RL. Parathyroid hormone down-regulates 1,25 dihydroxyvitamin D receptors (VDR) and VDR messenger ribonucleic acid in vitro and blocks homologous up-regulation of VDR in vivo. Endocrinology. 1990; 127:9428.
  • 99
    Zierold C, Mings JA, DeLuca HF. Parathyroid hormone regulates 25-hydroxyvitamin D(3)-24-hydroxylase mRNA by altering its stability. Proc Natl Acad Sci U S A. 2001; 98(24):135726.
  • 100
    Drezner MK. Phosphorus homeostasis and related disorders. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of bone biology. 3rd ed. San Diego, CA: Academic Press; p. 46586. 2008.
  • 101
    Silver J, Naveh-Many T. FGF23 and the parathyroid glands. Pediatr Nephrol. 2010; 25(11):22415.
  • 102
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004; 19(3):42935.
  • 103
    Alizadeh Naderi AS, Reilly RF. Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol. 2010; 6(11):65765.
  • 104
    Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, Jüppner H, Lanske B. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004; 23(7):42132.
  • 105
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004; 113(4):5618.
  • 106
    Ichikawa S, Sorenson AH, Austin AM, Mackenzie DS, Fritz TA, Moh A, Hui SL, Econs MJ. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology. 2009; 150(6):254350.
  • 107
    Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003; 17(12):2393403.
  • 108
    Bai X, Miao D, Panda D, Grady S, McKee MD, Goltzman D, Karaplis AC. Partial rescue of the Hyp phenotype by osteoblast-targeted PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) expression. Mol Endocrinol. 2002; 16(12):291325.
  • 109
    Bai X, Miao D, Goltzman D, Karaplis AC. Early lethality in Hyp mice with targeted deletion of Pth gene. Endocrinology. 2007; 148(10):497483.
  • 110
    Wysolmerski JJ, Stewart AF, Kovacs CS. Physiological actions of parathyroid hormone (PTH) and PTH-related protein: Epidermal, mammary, reproductive, pancreatic tissues. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of bone biology. 3rd ed. New York: Academic Press; p. 71331. 2008.