• 1
    Giannoudis P, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005; 36S:S207.
  • 2
    Verettas D, Galanis B, Kazakos K, Hatziyiannakis A, Kotsios E. Fractures of the proximal part of the femur in patients under 50 years of age. Injury. 2002; 33:4151.
  • 3
    Porter J, Ruckh T, Popat K. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechol Prog. 2009; 25(6):153960.
  • 4
    Cook E, Cook J. Bone graft substitutes and allografts for reconstruction of the foot and ankle. Clin Podiatr Med Surg. 2009; 26:589605.
  • 5
    Urist M. Bone formation by autoinduction. Science. 1956; 150:8939.
  • 6
    Feidler J, Roderer G, Gunther K, Brenner R. BMP-2, BMP-4 and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem. 2002; 87(3):30512.
  • 7
    McKay W, Peckham S, Badura J. A comprehensive review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int Orthopaed. 2007; 31:72934.
  • 8
    Govender S, Csimma C, Genant HK, Valentin-Opran A. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures. J Bone Joint Surg Am. 2002; 84(12):212334.
  • 9
    Cahill K, Chi J, Day A, Claus E. Prevalence, complications, and hospital charges associated with use of Bone Morphogenetic Proteins in spinal fusion procedures. JAMA. 2009; 302(1):5866.
  • 10
    Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011; 11(6):47191.
  • 11
    Dmitriev AE, Lehman RA Jr, Symes AJ. Bone morphogenetic protein-2 and spinal arthrodesis: the basic science perspective on protein interaction with the nervous system. Spine J. 2011; 11(6):5005.
  • 12
    Friedlaender G, Perry C, Cole JD, Cook S, Cierny G, Muscheler G, Zych G, Calhoun J, LaForte A, Yin S. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001; 83-A(Suppl 1):S1518.
  • 13
    Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest. 2008; 118(2):4218.
  • 14
    Marsh D, Li G. The biology of fracture healing: optimising outcome. Br Med Bull. 1999; 55(4):85669.
  • 15
    Andrew J, Hoyland J, Andrew S, Freemont A, Marsh D. Demonstration of TGF-beta 1 mRNA by in situ hybridization in normal human fracture healing. Calcif Tissue Int. 1993; 52(2):748.
  • 16
    Bourque W, Gross M, Hall B. Expression of four growth factors during fracture repair. Int J Dev Biol. 1993; 37:5739.
  • 17
    Kloen P, Lauzier D, Hamdy RC. Co-expression of BMPs and BMP-inhibitors in human fractures and non-unions. Bone. 2012; 51(1):5968.
  • 18
    Schmid G, Kobayashi C, Sandell L, Ornitz D. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn. 2009; 238(3):76674.
  • 19
    Uchida S, Sakai A, Kudo H, Otomo H, Watanuki M, Tanaka M, Nagashima M, Nakamura T. Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone. 2003; 32:491501.
  • 20
    Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, Bauer G, Nolta JA. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010; 62(12):116774.
  • 21
    Kim M, Kim C, Choi YS, Kim M, Park C, Suh Y. Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects. Mech Ageing Dev. 2012; 133(5):21525.
  • 22
    Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol. 2000; 28(6):7076.
  • 23
    Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011; 12(2):7989.
  • 24
    Kimelman Bleich N, Kallai I, Lieberman JR, Schawrz EM, Pelled G, Gazit D. Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev. 2012; 64(12):132030.
  • 25
    Evans CH. Gene delivery to bone. Adv Drug Deliv Rev. 2012; 64(12):133140.
  • 26
    Leachman SA, Hickerson RP, Schwartz ME, Bullough EE, Hutcherson SL, Boucher KM, Hansen CD, Eliason MJ, Srivatsa GS, Kornbrust DJ, Smith FJ, McLean WI, Milstone LM, Kaspar RL. First-in-human mutation-targeted siRNA phase 1b trial of an inherited skin disorder. Mol Ther. 2010; 18(2):4426.
  • 27
    Trobridge G. Genotoxicity of retroviral hemaotopoietic stem cell gene therapy. Expert Opin Biol Ther. 2011; 11(5):58193.
  • 28
    Kass-Eisler A, Leinwand L, Gall J, Bloom B, Falck-Pedersen E. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther. 1996; 3(2):15462.
  • 29
    Gene Therapy Clinical Trials Worldwide [Internet]. J Gene Med. Available from: Accessed on October 10, 2012.
  • 30
    Edelstein ML, Abedi MR, Wixon J, Edelstein RM. Gene therapy clinical trials worldwide 1989–2004 –an overview. J Gene Med. 2004; 6(6):597602.
  • 31
    Edelstein M, Abedi M, Wixon J. Gene therapy clinical trials worldwide to 2007–an update. J Gene Med. 2007; 9(10):83342.
  • 32
    Alden T, Pittman D, Hankins F, Beres E, Engh J, Das S, Hudson S, Kerns K, Kallmes D, Helm G. In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector. Hum Gene Ther. 1999; 10(13):224553.
  • 33
    Alden T, Beres E, Laurent J, Engh J, Das S, London S, Jane J, Hudson S, Helm G. The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J Craniofac Surg. 2000; 11(1):2430.
  • 34
    Jane J, Dunford B, Kron A, Pittman D, Sasaki T, Li J, Li H, Alden T, Dayoub H, Hankins G, Kallmes D, Helm G. Ectopic osteogenesis using adenoviral bone morphogenetic protein (BMP)-4 and BMP-6 gene transfer. Mol Ther. 2002; 6(4):46470.
  • 35
    Kang Q, Sun M, Cheng H, Peng Y, Montag A, Deyrup A, Jiang W, Luu H, Luo J, Szatkowski J, Vanichakarn P, Park J, Li Y, Haydon R. He T. Characterization of the distinct orthotopic bone forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004; 11(17):131220.
  • 36
    Li J, Li H, Sasaki T, Holman D, Beres B, Dumont J, Pittman D, Hankins G, Helm G. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in rat. Gene Ther. 2003; 10:173543.
  • 37
    Li J, Dunford B, Holman D, Beres B, Pittman D, Hankins G, Helm G. Rat strain differences in the ectopic osteogenic potential of recombinant human BMP adenoviruses. Mol Ther. 2003; 8(5):8229.
  • 38
    Okubo Y, Bessho K, Fujimura K, Iizuka T, Miyatake S. Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression. Biochem Biophys Res Commun. 2000; 267(1):3827.
  • 39
    Okubo Y, Bessho K, Fujimura K, Kaihara S, Iizuka T, Miyatake S. The time course study of osteoinduction by bone morphogenetic protein-2 via adenoviral vector. Life Sci. 2001; 70:32536.
  • 40
    Okubo Y, Bessho K, Fujimura K, Iizuka T, Miyatake S. In vitro and in vivo studies of a bone morphogenetic protein-2 expressing adenoviral vector. J Bone Joint Surg Am. 2001; 83-A:S99104.
  • 41
    Sonobe J, Okubo Y, Kaihara S, Miyatake S, Bessho K. Osteoinduction by bone morphogenetic protein 2-expressing adenoviral vector: application of biomaterial to mask the host immune response. Hum Gene Ther. 2004; 15:65968.
  • 42
    Kaihara S, Dessho K, Okubo Y, Sonobe J, Kawai M, IIzuka T. Simple and effective osteoinductive gene therapy by local injection of a bone morphogenetic protein-2–expressing recombinant adenoviral vector and FK506 in rats. Gene Ther. 2004; 11:43947.
  • 43
    Li J, Hankins G, Kao C, Li H, Kammauff J, Helm G. Osteogenesis in rats induced by a novel recombinant helper-dependent bone morphogenetic protein-9 (BMP-9) adenovirus. J Gene Med. 2003; 5(9):74856.
  • 44
    Varady P, Li J, Cunningham M, Beres E, Das S, Engh J, Alden T, Pittman D, Kerns K, Kallmes D, Helm G. Morphologic analysis of BMP-9 gene therapy–induced osteogenesis. Hum Gene Ther. 2001; 12(6):697710.
  • 45
    Osawa K, Okubo Y, Nakao K, Koyama N, Bessho K. Osteoinduction by repeat plasmid injection of human bone morphogenetic protein-2. J Gene Med. 2010; 12(12):93744.
  • 46
    Bright C, Park YS, Sieber AN, Kostuik JP, Leong KW. In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine. 2006; 31:2163.
  • 47
    Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau J, Goldstein S, McCauley L, Davidson B, Roessler B. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA. 1996; 93:5753.
  • 48
    Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG, Richter W. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res. 2005; 20:202835.
  • 49
    Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999; 5(7):7539.
  • 50
    Yoon CS, Park JH. Ultrasound-mediated gene delivery. Expert Opin Drug Deliv. 2010; 7(3):32130.
  • 51
    Osawa K, Okubo Y, Nakao K, Koyama N, Bessho K. Osteoinduction by microbubble-enhanced transcutaneous sonoporation of human bone morphogenetic protein-2. J Gene Med. 2009; 11(7):63341.
  • 52
    Satkauskas S, Ruzgys P, Venslauskas MS. Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin Biol Ther. 2012; 12(3):27586.
  • 53
    Kawai M, Maruyama H, Bessho K, Yamamoto H, Miyazaki J, Yamamoto T. Simple strategy for bone regeneration with a BMP–2/7 gene expression cassette vector. Biochem Biophys Res Commun. 2009; 390(3):10127.
  • 54
    Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Gazit D. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther. 2011; 19(1):539.
  • 55
    Kishimoto K, Watanabe Y, Nakamura H, Kokubun S. Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene. Bone. 2002; 31(2):3407.
  • 56
    Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther. 2008; 15(4):25766.
  • 57
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sat S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000; 408:7405.
  • 58
    Krieg A. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002; 20:70960.
  • 59
    Huang YC, Simmons C, Kaigler D, Rice KG, Mooney DJ. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther. 2005; 12:418.
  • 60
    Zhang S, Doschak M, Uludag H. Pharmacokinetics and bone formation by BMP-2 entrapped in polyethylenimine-coated albumin nanoparticle. Biomaterials. 2009; 30:514355.
  • 61
    Neamnark A, Suwantong O, Bahadur R, Hsu C, Supaphol P, Uludag H. Aliphatic lipid substitution on 2 kDa polyethylenimine improves plasmid delivery and transgene expression. Mol Pharm. 2009; 6(6):1798815.
  • 62
    Rose L, Kucharski C, Uludag H. Protein expression following non-viral delivery of plasmid DNA coding for basic FGF and BMP-2 in a rat ectopic model. Biomaterials. 2012; 33(11):336374.
  • 63
    Chew SA, Kretlow JD, Spicer PP, Edwards AW, Baggett LS, Tabata Y, Kasper FK, Mikos AG. Delivery of plasmid DNA encoding bone morphogenetic protein-2 with a biodegradable branched polycationic polymer in a critical-size rat defect model. Tissue Eng Part A. 2011; 17(5–6):75163.
  • 64
    Oda M, Kuroda S, Kondo H, Kasugai S. Hydroxyapatite fiber material with BMP–2 gene induces ectopic bone formation. J Biomed Mat Res Part B. 2009; 90(1):101.
  • 65
    Ono I, Yamashita T, Jin HY, Ito Y, Hamada H, Akasaka Y, Nakasu M, Ogawa T, Jombow K. Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy. Biomaterials. 2004; 25:470918.
  • 66
    Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T, Chung U, Kataoka K. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther. 2007; 15(9):1655.
  • 67
    Nejadnik MR, Mikos AG, Jansen JA, Leewenburgh SC. Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles. J Biomed Mater Res A. 2012; 100(5):13161323.
  • 68
    Yoshikawa H, Yoshioka K, Nakase T, Itoh K. Stimulation of ectopic bone formation in response to BMP-2 by Pho kinase inhibitor: a pilot study. Clin Orthop Relat Res. 2009; 467(12):308795.
  • 69
    Hu X, Zhang X, Dai L, Zhu J, Jia Z, Wang W, Zhou C, Ao Y. Histone deacetylase inhibitor trichostatin A promotes osteogenic differentiation of adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner. Stem Cells Dev. 2013; 22(2):24855.
  • 70
    Luan J, Cui Y, Zhang Y, Zhou X, Zhang G, Han J. Effect of CXCR4 inhibitor AMD100 on alkaline phosphatase activity and mineralization in osteoblastic MC3T3–E1 cells. Biosci Trend. 2012; 6(2):639.
  • 71
    Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M, Matthys R, Pohlemann T, Menger MD. Sildenafil accelerates fracture healing in mice. J Orthop Res. 2011; 29(6):86773.
  • 72
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010; 466(7308):83540.
  • 73
    Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast. Curr Issues Mol Biol. 2012; 15(1):718.
  • 74
    Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassam M. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA. 2011; 108(15):613944.
  • 75
    Inose H, Ochi H, Kimura A, Fujita K, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA. 2009; 106(49):207949.
  • 76
    Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, Li G, Wang H, Lu G, Hu X, Jiang S, Li JN, Lin MC, Zhang YO, Kung HF. MiRNA-20A promoted osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signalling. RNA Biol. 2011; 8(5):82938.
  • 77
    Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 2012; 586(16):237581.
  • 78
    Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH. miRNA-34c regulates Notch signalling during bone development. Hum Mol Genet. 2012; 21(13):29913000.
  • 79
    Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010; 28(2):35764.
  • 80
    Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Liao EY, Kang X, Sheng ZF, Zhou HD, Wu XP, Luo XH. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009; 119(12):366677.
  • 81
    Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011; 26(8):195363.
  • 82
    Sugatani T, Hruska KA. MicroRNA-233 is a key factor in osteoclast differentiation. J Cell Biochem. 2007; 101(4):9969.
  • 83
    Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS. miRNA-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 2009; 24(5):81625.
  • 84
    Bluml S, Bonelli M, Niederreiter B, Puchner A, Layr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 2011; 63(5):12818.
  • 85
    Singh S, Narang AS, Mahato RI. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res. 2011; 28(12):22963015.
  • 86
    Levy O, Ruvinov E, Reem T, Granot Y, Cohen S. Highly efficient osteogenic differentiation of human mesenchymal stem cells by eradication of STAT3 signaling. Int J Biochem Cell Biol. 2010; 42(11):182330.
  • 87
    Miyai K, Yoneda M, Hasegawa U, Toita S, Izu Y, Hemmi H, Hayata T, Ezura Y, Mizutani S, Miyazono K, Akiyoshi ??, Yamamoto T, Noda M. ANA deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events. J Biol Chem. 2009; 284(16):10953600.
  • 88
    Zheng YJ, Chung HJ, Min H, Kang M, Kim SH, Gadi J, Kim MH. In vitro osteoblast differentiation is negatively regulated by Hoxc8. Appl Biochem Biotechnol. 2010; 160(3):89100.
  • 89
    Ideno H, Takanabe R, Shimada A, Imaizumi K, Araki R, Abe M, Nifuji A. Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro. Exp Cell Res. 2009; 315(3):47484.
  • 90
    Takayama K, Suzuki A, Manaka T, Taguchi S, Hashimoto Y, Imai Y, Wakitani S, Takaoka K. RNA interference for noggin enhances the biological activity of bone morphogenetic proteins in vivo and in vitro. J Bone Miner Metab. 2009; 27(4):40211.
  • 91
    Manaka T, Suzuki A, Takayama K, Imai Y, Nakamura H, Takaoka K. Local delivery of siRNA using biodegradable polymer application to enhance BMP-induced bone formation. Biomaterials. 2011; 32(36):96428.
  • 92
    Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology. 2008; 149(8):38909.
  • 93
    You L, Pan L, Chen L, Chen JY, Zhang X, Lv Z, Fu D. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts. J Trans Med. 2012; 10:11.
  • 94
    Rios CN, Skoracki RJ, Mathur AB. GNAS1 and PHD2 short-interfering RNA support bone regeneration in vitro and in an in vivo sheep model. Clin Orthop Relat Res. 2012; 470(9):254153.
  • 95
    Chen C, Uludag H, Wang Z, Jiang H. Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro. J Cell Biochem. 2012; 113(12):367280.
  • 96
    Rifas L. The role of noggin in human mesenchymal stem cell differentiation. J Cell Biochem. 2007; 100(4):82434.
  • 97
    Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L, He Y, Yang Z, Pan X, Chow H, To K, Li Y, Li D, Wang X, Wang Y, Lee K, Hou Z, Dong N, Li G, Leung K, Hung L, He F, Zhang L, Qin L. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012; 18(2):30714.
  • 98
    Miele E, Spinelli GP, Miele E, Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomed. 2012; 7:363757.
  • 99
    Parra-Guillen ZP, Gonzalez-Aseguinolaza G, Berraondo P, Troconiz IF. Gene therapy: a pharmacokinetic/pharmacodynamics modelling overview. Pharm Res. 2010; 27(8):148797.
  • 100
    Li D, Wang W, Guo R, Qi YY, Gou ZR, Gao CY. Restoration of rat calvarial defects by poly(lactide-co-glycolide)/hydroxyapatite scaffolds loaded with bone mesenchymal stem cells and DNA complexes. Chin Sci Bull. 2012; 57:43544.
  • 101
    Chen Y, Luk K, Cheung K, Xu R, Lin M, Lu W, Leong J, Kung H. Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors. Gene Ther. 2003; 10:134553.
  • 102
    Chen Y, Luk K, Cheung K, Lu A, An X, Ng S, Lin M, Kung H. Combination of adeno-associated virus and adenovirus vectors expressing bone morphogenetic protein-2 produces enhanced osteogenic activity in immunocompetent rats. Biochem Biophys Res Commun. 2004; 317(3):67581.
  • 103
    Nasu T, Ito H, Tsutsumi R, Kitaori T, Takemoto M, Schwarz E, Nakamura T. Biological activation of bone-related biomaterials by recombinant adeno-associated virus vector. J Orthop Res. 2009; 27(9):11628.
  • 104
    Luk K, Chen Y, Cheung K, Kung H, Lu W, Leong J. Adeno–associated virus–mediated bone morphogenetic protein–4 gene therapy for in vivo bone formation. Biochem Biophys Res Commun. 2003; 308(3):63645.
  • 105
    Moriguchi R, Kogure K, Iwasa A, Akita H, Harashima H. Non-linear pharmacodynamics in a non-viral gene delivery system: positive non-linear relationship between dose and transfection efficiency. J Control Release. 2006; 110(3):6059.
  • 106
    Vogt S, Wexel G, Tischer T, Schillinger U, Ueblacker P, Wagner B, Hensler D, Willisch J, Geis C, Wubbenhorst D, Aigner J, Gerg M, Kruger A, Salzma G, Martinek V, Anton M, Plank C, Imhoff A, Gansbacher B. The influence of the stable expression of BMP2 in fibrin clots on the remodeling and repair of osteochondral defects. Biomaterials. 2009; 30(12):238592.
  • 107
    Luo T, Zhang W, Shi B, Cheng X, Zhang Y. Enhanced bone regeneration around dental implant with bone morphogenetic protein 2 gene and vascular endothelial growth factor protein delivery. Clin Oral Implants Res. 2012; 23(4):46773.
  • 108
    Zhang Y, Shi B, Li C, Wang Y, Chen Y, Zhang W, Luo T, Cheng X. The synergistic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J Control Release. 2009; 136(3):1728.
  • 109
    Meilander NJ, Pasumarthy MK, Kowalczyk ??, Cooper MJ, Bellamkonda RV. Sustained release of plasmid DNA using lipid microtubules and agarose hydrogels. J Control Release. 2003; 88(2):32131.
  • 110
    Cherng JY, Talsma H, Crommelin DJ, Hennink WE. Long term stability of poly((2-dimethylamino)ethyl methacrylate)–based gene delivery systems. Pharm Res. 1999; 16(9):141723.
  • 111
    Hobel S, Prinz R, Malek A, Urban-Klein B, Sitterberg J, Bakowsky U, Czubayko F, Aigner A. Polyethylenimine PEI F25-LMW allows the long-term storage of frozen complexes as fully active reagents in siRNA-mediated gene targeting and DNA delivery. Eur J Pharm Biopharm. 2008; 70:2941.
  • 112
    Sharma VK, Thomas M, Klibanov AM. Mechanistic studies on aggregation of polyethylenimine-DNA complexes and its prevention. Biotech Bioeng. 2005; 90(5):61420.
  • 113
    Del Pozo-Rodriguez A, Solinis MA, Gascon AR, Pedraz JL. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm. 2009; 71:1819.
  • 114
    Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, Kissel T. PEGylation of poly(ethylene imine) affects stability of complex with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjugate Chem. 2005; 16:78592.
  • 115
    Remaut K, Lucas B, Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Protection of oligonucleotides against enzymatic degradation by PEGylated and nonPEGylated branched polyethyleneimine. Biomacromolecules. 2007; 8:133340.
  • 116
    Rose L, Aliabadi HM, Uludag H. Gelatin coating to stabilize the transfection ability of nucleic acid polyplexes. Acta Biomaterialia. 2013; doi:pii:S1742-7061(13)00156-6. AB-12-2179.
  • 117
    Hu WW, Wang Z, Hollister SJ, Krebsbach PH. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther. 2007; 14(11):891901.
  • 118
    Croyle MA, Roessler BJ, Davidson BL, Hilfinger JM, Amidon GL. Factors that influence stability of recombinant adenoviral preparations for human gene therapy. Pharm Dev Technol. 1998; 3(3):37383.
  • 119
    Croyle MA, Cheng X, Wilson JM. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 2001; 8(17):128190.
  • 120
    Fischer W, Quadir MA, Barnard A, Smith DK, Haag R. Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells. Macromol Biosci. 2011; 11(12):173646.
  • 121
    Kolk A, Haczek C, Koch C, Vogt S, Kullmer Pautke C, Deppe H, Plank C. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating. Biomaterials. 2011; 32(28):68509.
  • 122
    Shin S, Salvay DM, Shea LD. Lentivirus delivery by adsorption to tissue engineering scaffolds. J Biomed Mater Res A. 2010; 93(4):12529.
  • 123
    Zhang Y, Song J, Shi B, Wang Y, Chen X, Huang C, Yang X, Xu D, Cheng X, Chen X. Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials. 2007; 28(31):463542.
  • 124
    Zhang Y, Wu C, Luo T, Li S, Cheng X, Miron RJ. Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone. 2012; 51(4):70413.
  • 125
    Schek RM, Wilke EN, Hollister SJ, Krebsbach PH. Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials. 2006; 27(7):11606.
  • 126
    Aliabadi HM, Landry B, Sun C, Tang T, Uludag H. Supramolecular assemblies in functional siRNA delivery: where do we stand?. Biomaterials. 2012; 33(8):254669.
  • 127
    Salcher EE, Kos P, Frohlich T, Badgujar N, Scheible M, Wagner E. Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J Control Release. 2012; 164(3):3806.
  • 128
    Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release. 2012; 161(2):55465.
  • 129
    Aghaloo T, Cowan CM, Chou YF, Zhang X, Freymiller E, Soo C, Wu B, Ting K, Zhang Z. Effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg. 2010; 68(2):3008.
  • 130
    Carano R, Filvaroff E. Angiogenesis and bone repair. Drug Delivery Today. 2003; 8(21):9809.
  • 131
    Street J, Bao M, deGuzman L, Bunting S, Peale F, Ferrara N, Stelnmetz H, Hoeffel J, Cleland J, Daugherty A, van Bruggen N, Redmond H, Carano R, Filvaroff E. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS. 2002; 99(15):965661.
  • 132
    Nakamura T, Hanada K, Tamura M, Shibanushi T, Nigi H, Tagawa M, Fukumoto S, Matsumoto T. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology. 1995; 136:127684.
  • 133
    Hong KS, Kim EC, Bang SH, Chung CH, Lee YI, Hyun JK, Lee HH, Jang JH, Kim TI, Kim HW. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mat Res. 2010; 94A(4):118794.
  • 134
    Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008; 43(5):93140.
  • 135
    Visser R, Arrabal PM, Santos-Ruiz L, Becerra J, Cifuentes M. Basic fibroblast growth factor enhances the osteogenic differentiation induced by bone morphogenetic protein-6 in vitro and in vivo. Cytokine. 2012; 58(1):2733.
  • 136
    Endocardial Vascular Endothelial Growth Factor-D (VEGF–D) gene therapy for treatment of severe coronary heart disease (KAT301). Bethesda, MD: US National Institutes of Health; 2012. Available from: Accessed October 8, 2012.
  • 137
    Adenovirus vascular endothelial growth factor (VEGF) therapy in vascular access—Novel trinam again control evidence (AdV-VANTAGE). Bethesda, MD: US National Institutes of Health; 2012. Available from: Accessed October 8, 2012.
  • 138
    VEGF gene transfer for diabetic neuropathy. Bethesda, MD: US National Institutes of Health; 2012. Available from: Accessed October 8, 2012.
  • 139
    VEGF gene transfer for critical limb ischemia. Bethesda, MD: US National Institutes of Health; 2012. Available from: Accessed October 8, 2012.
  • 140
    Angiogenesis using VEGF-A165/bFGF plasmid delivered percutaneously in no-option CAD patients; a controlled trial (VIF-CAD). Bethesda, MD: US National Institutes of Health; 2012. Available from: Accessed October 8, 2012.
  • 141
    Soran Z, Aydin RS, Gumusderelioglu M. Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering. J Microencapsul. 2012; 29(8):77080.
  • 142
    Luther G, Wagner ER, Zhu G, Kang Q, Luo Q, Lamplot J, Bi Y, Luo X, Luo J, Teven C, Shi Q, Kim SH, Gao JL, Huang E, Yang K, Rames R, Liu X, Li M, Hu N, Liu H, Su Y, Chen L, He BC, Zuo GW, Deng ZL, Reid RR, Luu HH, Haydon RC, He TC. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther. 2011; 11(3):22940.
  • 143
    Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, Nusse R, Helms JA. Wnt proteins promote bone regeneration. Sci Transl Med. 2010; 2(29):29ra30.
  • 144
    Lai CF, Bai S, Uthgenannt BA, Halstead LR, McLoughlin P, Schafer BW, Chu PH, Chen J, Otey CA, Cao X, Cheng SL. Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation. J Bone Miner Res. 2006; 21(1):1728.
  • 145
    Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H, Kim HS, Mayr MT, Hutton W, Titus L. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am. 2001; 83-A(3):36476.
  • 146
    Boden SD, Liu Y, Hair GA, Helms JA, Hu D, Racine M, Nanes MS, Titus L. LMP-1, a LIM-domain protein, mediates BMP-6 effects on bone formation. Endocrinology. 1998; 139(12):512534.
  • 147
    Lin Z, Rios HF, Park CH, Taut AD, Jin Q, Sugai JV, Robbins PD, Giannobile WV. LIM domain protein-3 (LMP3) cooperates with BMP7 to promote tissue regeneration by ligament progenitor cells. Gene Ther. 2013; 20(1):16.
  • 148
    Li W, Zawa JN, Siu RK, Lee M, Aghaloo T, Zhang X, Wu BM, Gertzman AA, Ting K, Soo C. Nell-1 enhances bone regeneration in a rat critical-sized femoral defect model. Plast Reconstr Surg. 2011; 127(2):5807.
  • 149
    Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu B, Tsou P, Ting K, Wang J. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007; 7(1):5060.
  • 150
    Strohbach C, Rundle C, Wergedal J, Chen S, Linkhart T, Lau K, Strong D. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcif Tissue Int. 2008; 83(3):20211.
  • 151
    Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C. Nell-1-induced bone regeneration in calvarial defects. Am J Pathol. 2006; 169(3):90315.
  • 152
    Gonda K, Nakaoka T, Yoshimura K, Otawara-Hamamoto Y, Harrii K. Heterotopic ossification of degenerating rat skeletal muscle induced by adeno-virus mediated transfer of bone morphogenetic protein-2 gene. J Bone Miner Res. 2000; 15(6):105665.
  • 153
    Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, Galun E, Gazit Z, Jorgensen C, Gazit D. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther. 2004; 9(4):58795.
  • 154
    Ashinoff R, Cetrulo C, Galiano R, Dobryansky M, Bhatt K, Ceradini D, Michaels J, McCarthy J, Gurtner G. Bone morphogenic protein-2 gene therapy for mandibular distraction osteogenesis. Ann Plast Surg. 2004; 52(6):58590.
  • 155
    Egermann M, Baltzer A, Adamaszek S, Evans C, Robbins P, Schneider E, Lill C. Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in osteoporotic sheep. Hum Gene Ther. 2006; 17(5):50717.
  • 156
    Lindsey W. Osseous tissue engineering with gene therapy for facial bone reconstruction. Laryngoscope. 2001; 111(7):112836.
  • 157
    Ishihara A, Zekas L, Weisbrode S, Bertone A. Comparative efficacy of dermal fibroblast-mediated and direct adenoviral bone morphogenetic protein-2 gene therapy for bone regeneration in an equine rib model. Gene Ther. 2010; 17(6):73344.
  • 158
    Ishihara A, Shields K, Litsky A, Mattoon J, Weisbrode S, Bartlett J, Bertone A. Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and osteotomy models. J Orthop Res. 2008; 26(6):76471.
  • 159
    Betz V, Betz O, Glatt V, Gerstenfeld L, Einhorn T, Bouxsein M, Vrahas M, Evans C. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther. 2007; 18(10):90715.
  • 160
    Egermann M, Lill C, Griesbeck K, Evans C, Robbins P, Schneider E, Baltzer A. Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther. 2006; 13(17):12909.
  • 161
    Menendez MI, Clark DJ, Carlton M, Flanigan DC, Jia G, Sammet S, Weisbrode SE, Knopp MV, Bertone AL. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage. 2011; 19(8):106675.
  • 162
    Betz O, Betz V, Nazarian A, Egermann M, Gerstenfeld L, Einhorn T, Vrahas M, Bouxsein M, Evans C. Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther. 2007; 14:103944.
  • 163
    Dupont KM, Boerckel JD, Stevens HY, Diab T, Kolambkar YM, Takahata M, Schwarz EM, Guldberg RE. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 2012; 347(3):57588.
  • 164
    Chen Y, Cheung K, Kung H, Leong J, Lu W, Luk K. In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene. Biochem Biophys Res Commun. 2002; 298(1):1217.
  • 165
    Lai YL, Kuo NC, Hsiao WK, Yew TL, Lee SY, Chen HL. Intramarrow bone morphogenetic protein 4 gene delivery enhances early implant stability in femurs of ovariectomized rabbits. J Periodontol. 2011; 82(7):104350.
  • 166
    Rundle C, Miyakoshi N, Kasukawa Y, Chen S, Sheng M, Wergedal J, Lau K, Baylink D. In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4. Bone. 2003; 32(6):591601.
  • 167
    Dunn C, Jin Q, Taba M, Franceschi R, Bruce Rutherford R, Giannnobile W. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther. 2005; 11(2):2949.
  • 168
    Helm G, Alden T, Beres E, Hudson S, Das S, Engh J, Pittman D, Kern K, Kallmes D. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg. 2000; 92(2S):1916.
  • 169
    Mehara B, Saadeh P, Steinbrech D, Dudziak M, Spector J, Greenwald J, Gittes G, Longaker M. Adenovirus-mediated gene therapy of osteoblasts in vitro and in vivo. J Bone Miner Res. 1999; 14(8):1290301.
  • 170
    Tarkka T, Sipola A, Jamsa T, Soini Y, Yla-Herttuala S, Tuukkanen J, Hautala T. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med. 2003; 5(7):5606.
  • 171
    Jin Q, Anusaksathien O, Webb S, Printz M, Giannobile W. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther. 2004; 9:51926.
  • 172
    Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA. 2008; 105(37):1390611.
  • 173
    Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK. miR-182 is a negative regulator or osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res. 2012; 27(8):166979.