• 1
    Cheng X, Li J, Lub Y, Keyak J, Lang T. Proximal femoral density and geometry measurements by quantitative computed tomography: Association with hip fracture. Bone. 2007; 40(1):16974.
  • 2
    Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004; 34(1):195202.
  • 3
    Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002; 359:192936.
  • 4
    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996; 12(7041):12549.
  • 5
    Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord. 2006; 7(1–2):6774.
  • 6
    Chappard D, Baslé MF, Legrand E, Audran M. Trabecular bone microarchitecture: a review. Morphologie. 2008; 92(299):16270.
  • 7
    Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am. 1970; 52(3):45767.
  • 8
    Vokes TJ, Giger ML, Chinander MR, Karrison TG, Favus MJ, Dixon LB. Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures. Osteoporos Int. 2006; 17(10):147282.
  • 9
    Gregory JS, Stewart A, Undrill PE, Reid DM, Aspden RM. Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study. BMC Med Imaging. 2004; 4(1):1:4.
  • 10
    Huber MB, Carballido-Gamio J, Fritscher K, Schubert R, Haenni M, Hengg C, Majumdar S, Link TM. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs. Med Phys. 2009; 36(11):508998.
  • 11
    Chappard C, Brunet-Imbault B, Lemineur G, Giraudeau B, Basillais A, Harba R, Benhamou CL. Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images. Osteoporos Int. 2005; 16(10):1193202.
  • 12
    Guggenbuhl P, Bodic F, Hamel L, Baslé MF, Chappard D. Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT. Osteoporos Int. 2006; 17:44754.
  • 13
    Veenland JF, Grashuis JL, Weinans H, Ding M, Vrooman HA. Suitability of texture features to assess changes in trabecular bone architecture. Pattern Recognit Lett. 2002; 23:395403.
  • 14
    Boehm HF, Lutz J, Körner M, Mutschler W, Reiser M, Pfeifer KJ. Using radon transform of standard radiographs of the hip to differentiate between post-menopausal women with and without fracture of the proximal femur. Osteoporos Int. 2009; 20:32333.
  • 15
    Chappard C, Bousson V, Bergot C, Mitton D, Marchadier A, Moser T, Benhamou CL, Laredo JD. Prediction of femoral fracture load: cross-sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiology. 2010; 255(2):53643.
  • 16
    Pulkkinen P, Jämsä T, Lochmüller EM, Kuhn V, Nieminen MT, Eckstein F. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int. 2008; 19:54758.
  • 17
    Rudman KE, Aspden RM, Meakin JR. Compression or tension? The stress distribution in the proximal femur. Biomed Eng Online. 2006; 5:12.
  • 18
    Miller Z, Fuchs MB, Arcan M. Trabecular bone adaptation with an orthotropic material model. J Biomech. 2002; 35:24756.
  • 19
    Pulkkinen P, Eckstein F, Lochmüller EM, Kuhn V, Jämsä T. Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res. 2006; 21(6):89501.
  • 20
    Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller EM. Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res. 2004; 19:37985.
  • 21
    Koivumäki JE, Thevenot J, Pulkkinen P, Salmi JA, Kuhn V, Lochmüller EM, Link TM, Eckstein F, Jämsä T. Does femoral strain distribution coincide with the occurrence of cervical versus trochanteric hip fractures? An experimental finite element study. Med Biol Eng Comput. 2010; 48(7):7117.
  • 22
    Partanen J, Jämsä T, Jalovaara P. Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J Bone Miner Res. 2001; 16:15406.
  • 23
    Amin S, Kopperdhal DL, Melton LJ 3rd, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 2011; 26(7):1593600.
  • 24
    Le Corroller T, Pithioux M, Chaari F, Rosa B, Parratte S, Maurel B, Argenson JN, Champsaur P, Chabrand P. Bone texture analysis is correlated with three-dimensional microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs. J Bone Miner Metab. 2013; 31(1):828.
  • 25
    Kolta S, Paratte S, Amphoux T, Persohn S, Campana S, Skalli W, Paternotte S, Argenson JN, Bouler JM, Gagey O, Roux C. Bone texture analysis of human femurs using a new device (BMA™) improves failure load prediction. Osteoporos Int. 2012; 23(4):13116.
  • 26
    Le Corroller T, Halgrin J, Pithioux M, Guenoun D, Chabrand P, Champsaur P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos Int. 2012; 23(1):1639.
  • 27
    Gray H. Anatomy of the human body. Philadelphia: Lea & Febiger; 1918.; 2000; Available
  • 28
    Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL, Keaveny TM. Osteoporotic Fractures in Men Study Group. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009; 4(3):47583.
  • 29
    Rachidi M, Marchadier A, Gadois C, Lespessailles E, Chappard C, Benhamou CL. Laws' masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis. Skeletal Radiol. 2008; 37(6):5418.
  • 30
    Lespessailles E, Gadois C, Kousignian I, Neveu JP, Fardellone P, Kolta S, Roux C, Do-Huu JP, Benhamou CL. Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int. 2008; 19(7):101928.
  • 31
    Fazzalari NL, Parkinson IH. Femoral trabecular bone of osteoarthritic and normal subjects in an age and sex matched group. Osteoarthritis Cartilage. 1998; 6(6):37782.
  • 32
    Karim L, Vashishth D. Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone. J Orthop Res. 2011; 29(11):173944.
  • 33
    Ranjanomennahary P, Ghalila SS, Malouche D, Marchadier A, Rachidi M, Benhamou C, Chappard C. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone. Med Phys. 2011; 38(1):4208.
  • 34
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011; 14(3):30212.
  • 35
    Djuric M, Zagorac S, Milovanovic P, Djonic D, Nikolic S, Hahn M, Zivkovic V, Bumbasirevic M, Amling M, Marshall RP. Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women. Int Orthop. 2013; 37(1):216.
  • 36
    Li ZC, Dai LY, Jiang LS, Qiu S. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Rheum. 2012; 64(12):395562.