SEARCH

SEARCH BY CITATION

References

  • 1
    Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010; 31(5):62962.
  • 2
    Ay L, Jaddoe VW, Hofman A, Moll HA, Raat H, Steegers EA, Hokken-Koelega AC. Foetal and postnatal growth and bone mass at 6 months: the Generation R Study. Clin Endocrinol (Oxf). 2011; 74(2):18190.
  • 3
    Steer CD, Tobias JH. Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC). Am J Clin Nutr. 2011; 94(6):1861S4S.
  • 4
    Jensen RB, Vielwerth S, Frystyk J, Veldhuis J, Larsen T, Mølgaard C, Greisen G, Juul A. Fetal growth velocity, size in early life and adolescence, and prediction of bone mass: association to the GH-IGF axis. J Bone Miner Res. 2008; 23(3):4396.
  • 5
    Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C. Intrauterine programming of adult body composition. J Clin Endocrinol Metab. 2001; 86(1):26772.
  • 6
    Javaid MK, Prieto-Alhambra D, Lui LY, Cawthon P, Arden NK, Lang T, Lane NE, Orwoll E, Barrett-Conner E, Nevitt MC, Cooper C. Cummings SR; Osteoporotic Fractures in Men (MrOS) Research Group. Self-reported weight at birth predicts measures of femoral size but not volumetric BMD in elderly men: MrOS. J Bone Miner Res. 2011; 26(8):18027.
  • 7
    de Bono S, Schoenmakers I, Ceesay M, Mendy M, Laskey MA, Cole TJ, Prentice A. Birth weight predicts bone size in young adulthood at cortical sites in men and trabecular sites in women from The Gambia. Bone. 2010; 46(5):131621.
  • 8
    Oliver H, Jameson KA, Sayer AA, Cooper C, Dennison EM. Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study. Bone. 2007; 41(3):4005.
  • 9
    Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 2006; 17(3):33747.
  • 10
    Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C. Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006; 367(9504):3643.
  • 11
    Romano T, Wark JD, Wlodek ME. Calcium supplementation does not rescue the programmed adult bone deficits associated with perinatal growth restriction. Bone. 2010; 47(6):105463.
  • 12
    Dalziel SR, Fenwick S, Cundy T, Parag V, Beck TJ, Rodgers A, Harding JE. Peak bone mass after exposure to antenatal betamethasone and prematurity: follow-up of a randomized controlled trial. J Bone Miner Res. 2006; 21(8):117586.
  • 13
    Antoniades L, MacGregor AJ, Andrew T, Spector TD. Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatology (Oxford). 2003; 42(6):7916.
  • 14
    Skytthe A, Christiansen L, Kyvik KO, Bødker FL, Hvidberg L, Petersen I, Nielsen MM, Bingley P, Hjelmborg J, Tan Q, Holm NV, Vaupel JW, McGue M, Christensen K. The Danish twin registry: linking surveys, national registers, and biological information. Twin Res Hum Genet. 2013; 16(1):10411.
  • 15
    Christiansen L, Frederiksen H, Schousboe K, Skytthe A, von Wurmb-Schwark N, Christensen K, Kyvik K. Age- and sex-differences in the validity of questionnaire-based zygosity in twins. Twin Res. 2003; 6(4):2758.
  • 16
    Nilsen ST, Finne PH, Bergsjo P, Stamnes O. Males with low birthweight examined at 18 years of age. Acta Paediatr Scand. 1984; 73(2):16875.
  • 17
    Ijzerman RG, Stehouwer CD, van Weissenbruch MM, de Geus EJ, Boomsma DI. Intra-uterine and genetic influences on the relationship between size at birth and height in later life: analysis in twins. Twin Res. 2001; 4(5):33743.
  • 18
    Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D. Growth in infancy and bone mass in later life. Ann Rheum Dis. 1997; 56(1):1721.
  • 19
    Barker DJP. Mothers, babies, and health in later life 2nd ed. Edinburgh/New York: Churchill Livingstone; 1998.
  • 20
    Fall C, Hindmarsh P, Dennison E, Kellingray S, Barker D, Cooper C. Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab. 1998; 83(1):1359.
  • 21
    Lanham SA, Bertram C, Cooper C, Oreffo RO. Animal models of maternal nutrition and altered offspring bone structure. Bone development across the lifecourse. Eur Cell Mater. 2011; 22:32132.
  • 22
    Mehta G, Roach HI, Langley-Evans S, Taylor P, Reading I, Oreffo RO, Aihie-Sayer A, Clarke NM, Cooper C. Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int. 2002; 71(6):4938.
  • 23
    Chen JR, Zhang J, Lazarenko OP, Kang P, Blackburn ML, Ronis MJ, Badger TM, Shankar K. Inhibition of fetal bone development through epigenetic down-regulation of HoxA10 in obese rats fed high-fat diet. FASEB J. 2012 Mar; 26(3):113141.
  • 24
    Page KC, Malik RE, Ripple JA, Anday EK. Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol Regul Integr Comp Physiol. 2009; 297(4):R104957.
  • 25
    Malloy PJ, Feldman D. Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin North Am. 2010; 39(2):33346.
  • 26
    Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000; 320(7240):96771.
  • 27
    Javaid MK, Eriksson JG, Kajantie E, Forsén T, Osmond C, Barker DJ, Cooper C. Growth in childhood predicts hip fracture risk in later life. Osteoporos Int. 2011; 22(1):6973.
  • 28
    Coupe B, Grit I, Darmaun D, Parnet P. The timing of “catch-up growth” affects metabolism and appetite regulation in male rats born with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2009; 297(3):R81324.
  • 29
    Coupe B, Grit I, Hulin P, Randuineau G, Parnet P. Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis. PLoS One. 2012; 7(1):e30616.
  • 30
    Devlin MJ, Bouxsein ML. Influence of pre- and peri-natal nutrition on skeletal acquisition and maintenance. Bone. 2012; 50(2):44451.
  • 31
    Gordon L, Joo JH, Andronikos R, Ollikainen M, Wallace EM, Umstad MP, Permezel M, Oshlack A, Morley R, Carlin JB, Saffery R, Smyth GK, Craig JM. Expression discordance of monozygotic twins at birth: effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics. 2011; 6(5):57992.
  • 32
    Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH, Wüst S, Wadhwa PD. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011; 108(33):E5138.
  • 33
    Barut A, Barut F, Kandemir NO, Aktunc E, Arikan I, Harma M, Harma MI, Gun BD. Placental chorangiosis: the association with oxidative stress and angiogenesis. Gynecol Obstet Invest. 2012; 73(2):14151.
  • 34
    Phillips DI, Davies MJ, Robinson JS. Fetal growth and the fetal origins hypothesis in twins—problems and perspectives. Twin Res. 2001; 4(5):32731.
  • 35
    Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, MacGregor AJ. Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res. 2001; 4(6):46477.
  • 36
    Hovi P, Andersson S, Järvenpää AL, Eriksson JG, Strang-Karlsson S, Kajantie E, Mäkitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. PLoS Med. 2009; 6(8):e1000135.
  • 37
    Smith CM, Wright NP, Wales JK, Mackenzie C, Primhak RA, Eastell R, Walsh JS. Very low birth weight survivors have reduced peak bone mass and reduced insulin sensitivity. Clin Endocrinol (Oxf). 2011; 75(4):4439.