• 1
    Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007; 40(1):1427.
  • 2
    Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010; 8:47.
  • 3
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999; 14(10):16729.
  • 4
    Baxter-Jones AD, Kontulainen SA, Faulkner RA, Bailey DA. A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone. 2008; 43(6):11017.
  • 5
    Modlesky C, Lewis R. Does exercise during growth have a long term effect on bone health? Exerc Sport Sci Rev. 2002; 30(4):1716.
  • 6
    McKay H, Smith E. Winning the battle against childhood physical inactivity: the key to bone strength? J Bone Miner Res. 2008; 23(7):9805.
  • 7
    Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res. 2003; 18(2):3529.
  • 8
    Kontulainen S, Kannus P, Haapasalo H, et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res. 2001; 16(2):195201.
  • 9
    Kontulainen S, Kannus P, Pasanen M, et al. Does previous participation in high impact residual bone gain in growing girls. Int J Sports Med. 2002; 23(8):57581.
  • 10
    Fuchs R, Snow C. Gains in hip bone mass from high impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002; 141(3):35762.
  • 11
    Gunter K, Baxter-Jones A, Mirwald R, et al. Impact exercise increases BMC during growth: an 8 year longitudinal study. J Bone Miner Res. 2008; 23(7):98693.
  • 12
    Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ. Weight bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med. 1988; 108(6):8248.
  • 13
    Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000; 15(12):2495503.
  • 14
    Nilsson M, Ohisson C, Mellstrom D, Lorentzon M. Previous sport activity during childhood and adolescence is associated with increased cortical bone size in young adult men. J Bone Miner Res. 2009; 24(1):12533.
  • 15
    Pollock NK, Laing EM, Modlesky CM, O'Connor PJ, Lewis RD. Former college artistic gymnasts maintain higher BMD: a nine-year follow-up. Osteoporos Int. 2006; 17(11):16917.
  • 16
    Scerpella T, Dowthwaite J, Rosenbaum P. Sustained skeletal benefit from childhood mechanical loading. Osteoporos Int. 2010; 22(7):220510.
  • 17
    Erlandson M, Kontulainen S, Chilibeck P, Arnold C, Faulkner R, Baxter-Jones A. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res. 2012; 27(1):10410.
  • 18
    Eser P, Hill B, Ducher G, Bass S. Skeletal benefits after long-term retirement in former elite female gymnasts. J Bone Miner Res. 2009; 24(12):19818.
  • 19
    Kontulainen S, Kannus P, Haapasalo H, et al. Changes in bone mineral content with decreased training in competitive young adult tennis players and controls: a prospective 4-yr follow-up. Med Sci Sports Exerc. 1999; 31(5):64652.
  • 20
    Daly R, Bass S. Lifetime sport and leisure activity participation is associated with greater bone size, quality and strength in older men. Osteoporos Int. 2006; 17(8):125867.
  • 21
    Tveit M, Rosengren B, Nilsson J-A, Ahlborg H, Karlsson M. Bone mass following physical activity in young years: a mean 39-year prospective controlled study in men. Osteoporos Int. 2013; 24(4):138997.
  • 22
    Ashe MC, Khan KM, Kontulainen SA, et al. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int. 2006; 17(8):124151.
  • 23
    Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact. 2008; 8(4):4019.
  • 24
    Duckham RL, Frank AW, Johnston JD, Olszynski WP, Kontulainen SA. Monitoring time interval for pQCT-derived bone outcomes in postmenopausal women. Osteoporos Int. 2013; 24(6):191722.
  • 25
    Frank AW, Labas MC, Johnston JD, Kontulainen SA. Site-specific variance in radius and tibia bone strength as determined by muscle size and body mass. Physiother Can. 2012; 3(64):292301.
  • 26
    Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R. Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc. 1997; 29(10):13449.
  • 27
    Copeland J, Kowalski KC, Donen RM, Tremblay MS. Convergent validity of the Physical Activity Questionnaire for Adults: the new member of the PAQ family. J Phys Act Health. 2005; 2(2):21629.
  • 28
    Kowalski K, Crocker PRE, Faulkner RA. Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci. 1997; 9(2):17486.
  • 29
    Kowalski K, Crocker PR, Kowalski NP. Convergent validity of the Physical Activity Questionnaire for Adolescents. Pediatr Exerc Sci. 1997; 9(4):34252.
  • 30
    Whiting S, Colleaux C, Bacchetto T. Dietary intakes of children age 8 to 15 years living in Saskatoon. J Can Diet Assoc. 1995; 56(3):11925.
  • 31
    Vatanparast H, Bailey D, Baxter-Jones A, Whiting S. The effects of dietary protein on bone mineral mass in young adults may be modulated by adolescent calcium intake. J Nutr. 2007; 137(12):26749.
  • 32
    Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone. 2006; 39(3):598608.
  • 33
    Lorbergs AL, Farthing JP, Baxter-Jones AD, Kontulainen SA. Forearm muscle size, strength, force, and power in relation to pQCT-derived bone strength at the radius in adults. Appl Physiol Nutr Metab. 2011; 36(5):61825.
  • 34
    Erlandson M, Kontulainen S, Chilibeck P, Arnold C, Faulkner R, Baxter-Jones A. Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res. 2012; 27(11):2298305.
  • 35
    Eastell R. Role of oestrogen in the regulation of bone turnover at the menarche. J Endocrinol. 2005; 185(2):22334.
  • 36
    Bass SL. The structural adaptations of cortical bone to loading during different stages of maturation. J Musculoskelet Neuronal Interact. 2003; 3(4):3457.
  • 37
    Kontulainen SA, Macdonald HM, Khan KM, McKay HA. Examining bone surfaces across puberty: a 20-month pQCT trial. J Bone Miner Res. 2005; 20(7):12027.
  • 38
    Thompson A, Baxter-Jones AD, Mirwald RL, Bailey DA. Comparison of physical activity in male and female children: does maturation matter? Med Sci Sports Exerc. 2003; 35(10):168490.
  • 39
    Erlandson MC, Sherar LB, Mosewich AD, Kowalski KC, Bailey DA, Baxter-Jones AD. Does controlling for biological maturity improve physical activity tracking? Med Sci Sports Exerc. 2011; 43(5):8007.
  • 40
    Jarvinen TL, Pajamaki I, Sievanen H, et al. Femoral neck response to exercise and subsequent deconditioning in young and adult rats. J Bone Miner Res. 2003; 18(7):12929.
  • 41
    Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007; 22(2):2519.
  • 42
    Warden SJ, Galley MR, Hurd AL, et al. Elevated mechanical loading when young provides lifelong benefits to cortical bone properties in female rats independent of a surgically-induced menopause. Endocrinology. 2013 Sep; 154(9):317887.
  • 43
    Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2011; 375(9727):172936.
  • 44
    Carter L, Whiting S, Drinkwater D, Zello G, Faulkner R, Bailey D. Self-reported calcium intake and bone mineral content in children and adolescents. J Am Coll Nutr. 2001; 20(5):5029.