SEARCH

SEARCH BY CITATION

References

  • 1
    Cooper C, Cole ZA, Holroyd CR, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. 2011; 22:127788.
  • 2
    Sambrook P, Cooper C. Osteoporosis. Lancet. 2006; 367:20108.
  • 3
    Mautalen CA, Vega EM, Einhorn TA. Are the etiologies of cervical and trochanteric hip fractures different? Bone. 1996; 18:133S7S.
  • 4
    Parker MJ, Twemlow TR. Spontaneous hip fractures, 44/872 in a prospective study. Acta Orthop Scand. 1997; 68:3256.
  • 5
    Pulkkinen P, Gluer CC, Jamsa T. Investigation of differences between hip fracture types: a worthy strategy for improved risk assessment and fracture prevention. Bone. 2011; 49:6004.
  • 6
    Engelke K, Adams JE, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008; 11:12362.
  • 7
    Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012; 263:317.
  • 8
    Bligh M, Bidaut L, White RA, Murphy WA Jr, Stevens DM, Cody DD. Helical multidetector row quantitative computed tomography (QCT) precision. Acad Radiol. 2009; 16:1509.
  • 9
    Smith KE, Whiting BR, Reiker GG, Commean PK, Sinacore DR, Prior FW. Assessment of technical and biological parameters of volumetric quantitative computed tomography of the foot: a phantom study. Osteoporos Int. 2012; 23:197785.
  • 10
    Lang T. Bone mineral assessment of the axial skeleton: technical aspects. In: Adler RA, editor. Contemporary endocrinology: osteoporosis: pathophysiology and clinical management. New York: Humana Press; p. 2010.2349.
  • 11
    Currey JD. Bones. Structure and mechanics. New Jersey: Princeton University Press; 2002.
  • 12
    Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998; 20:92102.
  • 13
    Jee WSS. Integrated bone tissue physiology: anatomy and physiology. Cowin SC, editor. New York: CRC Press; 2001.
  • 14
    Holzer G, von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 2009; 24:46874.
  • 15
    Koivumäki JE, Thevenot J, Pulkkinen P, et al. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone. 2012; 50:8249.
  • 16
    Koivumäki JE, Thevenot J, Pulkkinen P, et al. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone. 2012; 51:73740.
  • 17
    Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int. 1995; 5:25261.
  • 18
    Manske SL, Liu-Ambrose T, Cooper ML, et al. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int. 2009; 20:44553.
  • 19
    Verhulp E, van Rietbergen B, Huiskes R. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone. 2008; 42:305.
  • 20
    de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech. 2009; 42:191725.
  • 21
    Huber MB, Carballido-Gamio J, Bauer JS, et al. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT—correlation with biomechanical strength measurement. Radiology. 2008; 247:47281.
  • 22
    Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology. 2008; 47:iv916.
  • 23
    Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013; 2013:213234.
  • 24
    Bousson V, Le Bras A, Roqueplan F, et al. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006; 17:85564.
  • 25
    Cheng X, Li J, Lu Y, Keyak J, Lang T. Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone. 2007; 40:16974.
  • 26
    Ito M, Wakao N, Hida T, et al. Analysis of hip geometry by clinical CT for the assessment of hip fracture risk in elderly Japanese women. Bone. 2010; 46:4537.
  • 27
    Kang Y, Engelke K, Fuchs C, Kalender WA. An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph. 2005; 29:53341.
  • 28
    Kang Y, Engelke K, Kalender WA. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging. 2003; 22:58698.
  • 29
    Lang TF, Keyak JH, Heitz MW, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone. 1997; 21:1018.
  • 30
    Li W, Kornak J, Harris T, et al. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone. 2009; 44:596602.
  • 31
    Poole KE, Mayhew PM, Rose CM, et al. Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res. 2010; 25:48291.
  • 32
    Treece GM, Gee AH, Mayhew PM, Poole KE. High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal. 2010; 14:27690.
  • 33
    Treece GM, Poole KE, Gee AH. Imaging the femoral cortex: thickness, density and mass from clinical CT. Med Image Anal. 2012; 16:95265.
  • 34
    Yang L, Maric I, McCloskey EV, Eastell R. Shape, structural properties, and cortical stability along the femoral neck: a study using clinical QCT. J Clin Densitom. 2008; 11:37382.
  • 35
    Carballido-Gamio J, Harnish R, Saeed I, et al. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J Bone Miner Res. 2013; 28:53746.
  • 36
    Hangartner TN. Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and microCT images. J Musculoskelet Neuronal Interact. 2007; 7:916.
  • 37
    Hangartner TN, Short DF. Accurate quantification of width and density of bone structures by computed tomography. Med Phys. 2007; 34:377784.
  • 38
    Prevrhal S, Fox JC, Shepherd JA, Genant HK. Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys. 2003; 30:18.
  • 39
    Camp JJ, Karwoski RA, Stacy MC, et al. System for the analysis of whole-bone strength from helical CT images. In: Amini AA, Manduca A, editors. Medical Imaging 2004: Physiology, Function, and Structure from Medical Images. Proceedings of SPIE, volume 5369. Bellingham WA: SPIE; 2004. p.7488.
  • 40
    Kang Y, Engelke K, Kalender WA. Interactive 3D editing tools for image segmentation. Med Image Anal. 2004; 8:3546.
  • 41
    Brett A, Brown K, Cann C, Adams J. CTXA hip: an extension of classical DXA measurements using QCT. J Clin Densitom. 2012; 15:495.
  • 42
    Carballido-Gamio J, Nicolella DP. Computational anatomy in the study of bone structure. Curr Osteoporos Rep. 2013 Sep; 11(3):23745.
  • 43
    Poole KE, Treece GM, Mayhew PM, et al. Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PloS One. 2012; 7:e38466.
  • 44
    Carballido-Gamio J, Harnish R, Saeed I, et al. Structural patterns of the proximal femur in relation to age and hip fracture risk in women. Bone. 2013; 57:2909.
  • 45
    Black DM, Bouxsein ML, Marshall LM, et al. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res. 2008; 23:132633.
  • 46
    Yang L, Burton AC, Bradburn M, et al. Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res. 2012; 27:231424.
  • 47
    Yang L, Udall WJM, McCloskey EV, Eastell R. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int. 2014 Jan; 25(1):25163.
  • 48
    Johannesdottir F, Poole KE, Reeve J, et al. Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone. 2011; 48:126876.
  • 49
    Crabtree N, Loveridge N, Parker M, et al. Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res. 2001; 16:131828.
  • 50
    Bousson VD, Adams J, Engelke K, et al. In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Miner Res. 2011; 26:88193.
  • 51
    Singer BR, McLauchlan GJ, Robinson CM, Christie J. Epidemiology of fractures in 15,000 adults: the influence of age and gender. J Bone Joint Surg Br. 1998; 80:2438.
  • 52
    Riggs BL, Melton LJ, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004; 19:194554.
  • 53
    Sigurdsson G, Aspelund T, Chang M, et al. Increasing sex difference in bone strength in old age: The Age, Gene/Environment Susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone. 2006; 39:64451.
  • 54
    Johannesdottir F, Aspelund T, Reeve J, et al. Similarities and differences between sexes in regional loss of cortical and trabecular bone in the mid-femoral neck: The AGES-Reykjavik Longitudinal Study. J Bone Miner Res. 2013; 28:216576.
  • 55
    Feik SA, Thomas CD, Clement JG. Age-related changes in cortical porosity of the midshaft of the human femur. J Anat. 1997; 191(Pt 3):40716.
  • 56
    Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010; 375:172936.
  • 57
    Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res. 2006; 21:185663.
  • 58
    Power J, Loveridge N, Rushton N, Parker M, Reeve J. Evidence for bone formation on the external “periosteal” surface of the femoral neck: a comparison of intracapsular hip fracture cases and controls. Osteoporos Int. 2003; 14:1415.
  • 59
    Beck TJ, Ruff CB, Bissessur K. Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int. 1993; 53:S416.
  • 60
    Seeman E. During aging, men lose less bone than women because they gain more periosteal bone, not because they resorb less endosteal bone. Calcif Tissue Int. 2001; 69:2058.
  • 61
    Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002; 359:184150.
  • 62
    Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am. 2003; 32:2538.
  • 63
    Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J. Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone. 2003; 32:56170.
  • 64
    Ito M, Nakata T, Nishida A, Uetani M. Age-related changes in bone density, geometry and biomechanical properties of the proximal femur: CT-based 3D hip structure analysis in normal postmenopausal women. Bone. 2011; 48:62730.
  • 65
    Nicks KM, Amin S, Melton LJ 3rd, et al. Three-dimensional structural analysis of the proximal femur in an age-stratified sample of women. Bone. 2013; 55:17988.
  • 66
    Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES. Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res. 2006; 21:1197206.
  • 67
    Carpenter RD, Sigurdsson S, Zhao S, et al. Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone. 2011; 48:7417.
  • 68
    Mayhew PM, Thomas CD, Clement JG, et al. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005; 366:12935.
  • 69
    Boyce TM, Bloebaum RD. Cortical aging differences and fracture implications for the human femoral neck. Bone. 1993; 14:76978.
  • 70
    Marshall LM, Zmuda JM, Chan BKS, et al. Race and ethnic variation in proximal femur structure and BMD among older men. J Bone Miner Res. 2008; 23:12130.
  • 71
    Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. 2003; 18:17818.
  • 72
    Treece GM, Gee AH, Turmezei TD, Poole KE. The effects of age, weight and femoral shape on cortical thickness and mass of the hip. J Bone Miner Res. 2013; 28 (Suppl 1).
  • 73
    McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001; 344:33340.
  • 74
    Cristofolini L, Juszczyk M, Martelli S, Taddei F, Viceconti M. In vitro replication of spontaneous fractures of the proximal human femur. J Biomech. 2007; 40:283745.
  • 75
    Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003; 349:120715.
  • 76
    Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med. 2005; 353:55565.
  • 77
    McClung MR, San Martin J, Miller PD, et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med. 2005; 165:17628.
  • 78
    Eastell R, Lang T, Boonen S, et al. Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos Int. 2010; 21:127785.
  • 79
    Yang L, Sycheva AV, Black DM, Eastell R. Site-specific differential effects of once-yearly zoledronic acid on the hip assessed with quantitative computed tomography: results from the HORIZON Pivotal Fracture Trial. Osteoporos Int. 2013 Jan; 24(1):32938.
  • 80
    Lewiecki EM, Keaveny TM, Kopperdahl DL, et al. Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2009; 94:17180.
  • 81
    Engelke K, Fuerst T, Dasic G, Davies RY, Genant HK. Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone. 2010; 46:162632.
  • 82
    Ito M, Nakamura T, Fukunaga M, Shiraki M, Matsumoto T. Effect of eldecalcitol, an active vitamin D analog, on hip structure and biomechanical properties: 3D assessment by clinical CT. Bone. 2011; 49:32834.
  • 83
    Keaveny TM, Hoffmann PF, Singh M, et al. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res. 2008; 23:197482.
  • 84
    Borggrefe J, Graeff C, Nickelsen TN, Marin F, Glüer CC. Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J Bone Miner Res. 2010; 25:47281.
  • 85
    McClung MR, Zanchetta JR, Hoiseth A, et al. Denosumab densitometric changes assessed by quantitative computed tomography at the spine and hip in postmenopausal women with osteoporosis. J Clin Densitom. 2013; 16:2506.
  • 86
    Keaveny TM, McClung M, Genant HK, et al. Denosumab improves both femoral and vertebral strength in women with osteoporosis: results from the FREEDOM Trial. J Bone and Miner Res. 2010; 25(Suppl 1):S225362.
  • 87
    Genant HK, Libanati C, Engelke K, et al. Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone. 2013; 56:4828.
  • 88
    Poole KE, Treece GM, Gee AH, Brown JP, McClung MR, Wang A. Denosumab treatment is associated with progressive improvements in cortical mass and thickness throughout the hip. J Bone Miner Res. 2012; 27 (Suppl 1).
  • 89
    Brixen K, Chapurlat R, Cheung AM, et al. Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: a randomized trial. J Clin Endocrinol Metab. 2013; 98:57180.
  • 90
    Engelke K, Nagase S, Fuerst T, et al. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: The OCEAN study. J Bone Miner Res. Forthcoming. Epub. 2013 Aug 27. DOI:10.1002/jbmr.2080
  • 91
    Hangartner TN, Gilsanz V. Evaluation of cortical bone by computed tomography. J Bone Miner Res. 1996; 11:151825.
  • 92
    Newman DL, Dougherty G, Obaid A, Hajrasy A. Limitations of clinical CT in assessing cortical thickness and density. Phys Med Biol. 1998; 43:61926.
  • 93
    Prevrhal S, Engelke K, Kalender W. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol. 1999; 44:75164.
  • 94
    Davis KA, Burghardt AJ, Link TM, Majumdar S. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Calcif Tissue Int. 2007; 81:36471.