SEARCH

SEARCH BY CITATION

References

  • 1
    Smith MC Jr, Rambaut PC, Vogel JM, Whittle MW. Bone mineral measurement—experiment M078. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab (NASA SP-377). Washington, DC: National Aeronautics and Space Administration; 1977: 183190.
  • 2
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:10061012.
  • 3
    Smith SM, Wastney ME, O'Brien KO, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Miner Res. 2005;20:208218.
  • 4
    Sibonga JD, Cavanagh PR, Lang TF, et al. Adaptation of the skeletal system during long-duration spaceflight. Clinic Rev Bone Miner Metabol. 2008;5:249261.
  • 5
    Smith SM, Zwart SR, Kloeris V, Heer M. Nutritional Biochemistry of Space Flight. Hauppauge, NY: Nova Science Publishers; 2009.
  • 6
    Gundberg CM, Nieman SD, Abrams S, Rosen H. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab. 1998;83:32583266.
  • 7
    Sugiyama T, Kawai S. The use of vitamin K may be a good choice for microgravity-induced bone disorder. J Bone Miner Res. 2001;16:794795.
  • 8
    Heer M. Nutritional interventions related to bone turnover in European space missions and simulation models. Nutrition. 2002;18:853856.
  • 9
    Caillot-Augusseau A, Vico L, Heer M, et al. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts. Clin Chem. 2000;46:11361143.
  • 10
    Vermeer C, Wolf J, Craciun AM, Knapen MH. Bone markers during a 6-month space flight: effects of vitamin K supplementation. J Gravit Physiol. 1998;5:6569.
  • 11
    Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr. 2005;135:437443.
  • 12
    National Aeronautics and Space Administration Johnson Space Center. Nutritional requirements for International Space Station (ISS) missions up to 360 days. Houston, TX: National Aeronautics and Space Administration Lyndon B. Johnson Space Center; 1996.
  • 13
    Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001.
  • 14
    Smith SM, Wastney ME, Morukov BV, et al. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes. Am J Physiol. 1999;277 (1 Pt 2): R110.
  • 15
    Zwart SR, Crawford GE, Gillman PL, et al. Effects of 21 days of bed rest, with or without artificial gravity, on nutritional status of humans. J Appl Physiol. 2009;107:5462.
  • 16
    Smith SM, Zwart SR, Heer MA, et al. Effects of artificial gravity during bed rest on bone metabolism in humans. J Appl Physiol. 2009;107:4753.
  • 17
    Holguin N, Muir J, Rubin C, Judex S. Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine J. 2009;9:470477.
  • 18
    Zwart SR, Oliver SM, Fesperman JV, et al. Nutritional status assessment before, during, and after long-duration head-down bed rest. Aviat Space Environmen Med. 2009;80:A15A22.
  • 19
    Inniss AM, Rice BL, Smith SM. Dietary support of long-duration head-down bed rest. Aviat Space Environ Med. 2009;80:A9A14.
  • 20
    Schneider SM, Lee SM, Macias BR, Watenpaugh DE, Hargens AR. WISE-2005: exercise and nutrition countermeasures for upright VO2pk during bed rest. Med Sci Sports Exerc. 2009;41:21652176.
  • 21
    Smith SM, Davis-Street JE, Fesperman JV, Smith MD, Rice BL, Zwart SR. Nutritional assessment during a 14-d saturation dive: the NASA Extreme Environment Mission Operations V Project. J Nutr. 2004;134:17651771.
  • 22
    Davidson KW, Sadowski JA. Determination of vitamin K compounds in plasma or serum by high-performance liquid chromatography using postcolumn chemical reduction and fluorimetric detection. Methods Enzymol. 1997;282:408421.
  • 23
    Booth SL, O'Brien-Morse ME, Dallal GE, Davidson KW, Gundberg CM. Response of vitamin K status to different intakes and sources of phylloquinone-rich foods: comparison of younger and older adults. Am J Clin Nutr. 1999;70:368377.
  • 24
    Booth SL, Martini L, Peterson JW, Saltzman E, Dallal GE, Wood RJ. Dietary phylloquinone depletion and repletion in older women. J Nutr. 2003;133:25652569.
  • 25
    Sokoll LJ, Booth SL, Davidson KW, Dallal GE, Sadowski JA. Diurnal variation in total and undercarboxylated osteocalcin: influence of increased dietary phylloquinone. Calcif Tissue Int. 1998;62:447452.
  • 26
    Pearson DA. Bone health and osteoporosis: the role of vitamin K and potential antagonism by anticoagulants. Nutr Clin Pract. 2007;22:517544.
  • 27
    Booth SL. Roles for vitamin K beyond coagulation. Ann Rev Nutr. 2009;29:89110.
  • 28
    New SA. Do vegetarians have a normal bone mass? Osteoporos Int. 2004;15:679688.
  • 29
    New SA, Robins SP, Campbell MK, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000;71:142151.
  • 30
    LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact. 2007;7:3347.
  • 31
    Meck JV, Dreyer S, Warren L. Long-duration head-down bed rest: Project overview, vital signs, and fluid balance. Aviat Space Environ Med. 2009;80:A1A8.