SEARCH

SEARCH BY CITATION

References

  • 1
    Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr Rev. 1997; 18: 832872.
  • 2
    Kovacs CS, El-Hajj Fuleihan G. Calcium and bone disorders during pregnancy and lactation. Endocrinol Metab Clin North Am. 2006; 35: 2151.
  • 3
    Wysolmerski JJ. Conversations between breast and bone: physiological bone loss during lactation as evolutionary template for osteolysis in breast cancer and pathological bone loss after menopause. BoneKEy. 2007; 4: 209225.
  • 4
    Kovacs CS. Calcium and bone metabolism in pregnancy and lactation. J Clin Endocrinol Metab. 2001; 86: 23442348.
  • 5
    Kovacs CS. Calcium and bone metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 2005; 10: 105118.
  • 6
    Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, Kovacs CS. Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation. Endocrinology. 2006; 147: 40104021.
  • 7
    Fudge NJ, Kovacs CS. Pregnancy up-regulates intestinal calcium absorption and skeletal mineralization independently of the vitamin D receptor. Endocrinology. 2010; 151: 886895.
  • 8
    VanHouten JN, Dann P, Stewart AF, et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest. 2003; 112: 14291436.
  • 9
    Ardeshirpour L, Dann P, Pollak M, Wysolmerski J, VanHouten J. The calcium-sensing receptor regulates PTHrP production and calcium transport in the lactating mammary gland. Bone. 2006; 38: 787793.
  • 10
    VanHouten J, Dann P, McGeoch G, et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004; 113: 598608.
  • 11
    VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology. 2003; 144: 55215529.
  • 12
    Kirby BJ, Karaplis AC, Kovacs CS. Stimulation of bone formation and mineralization post-weaning without parathyroid hormone. J Bone Miner Res. 2010; 2010 (Suppl 1): Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=59f58e51fc-623d-4826-a4568-4829 e4832e4811f4525 Accessed November 4824, 2010.
  • 13
    Kovacs CS, Kronenberg HM. Skeletal physiology: pregnancy and lactation. In: Favus MJ ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 6th edition. Washington, DC: American Society for Bone and Mineral Research; 2006: 6368.
  • 14
    Ardeshirpour L, Brian S, Dann P, Vanhouten J, Wysolmerski J. Increased pthrp and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton. Endocrinology. 2010; 151: 55915601.
  • 15
    Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009; 44: 1116.
  • 16
    Miller SC, Bowman BM. Rapid inactivation and apoptosis of osteoclasts in the maternal skeleton during the bone remodeling reversal at the end of lactation. Anat Rec (Hoboken). 2007; 290: 6573.
  • 17
    Qing H, Andresirpour L, Dusecich V, Dallas M, Wysolmerski JJ, Bonewald LF. Osteocytic perilacunar remodeling as a significant source of calcium during lactation [abstract]. J Bone Miner Res. 2008; 23 (Suppl): S401.
  • 18
    Qing H, Bonewald LF. Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int J Oral Sci. 2009; 1: 5965.
  • 19
    Collet P, Uebelhart D, Vico L, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997; 20: 547551.
  • 20
    Holick MF. Perspective on the impact of weightlessness on calcium and bone metabolism. Bone. 1998; 22 (5 Suppl): 105S111S.
  • 21
    Tilton FE, Degioanni JJ, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med. 1980; 51: 12091213.
  • 22
    Hermus AR, Smals AG, Swinkels LM, et al. Bone mineral density and bone turnover before and after surgical cure of Cushing's syndrome. J Clin Endocrinol Metab. 1995; 80: 28592865.
  • 23
    Lufkin EG, Wahner HW, O'Fallon WM, et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med. 1992; 117: 19.
  • 24
    Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000; 15: 9931000.
  • 25
    Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res. 1996; 11: 10521060.
  • 26
    Chantry CJ, Auinger P, Byrd RS. Lactation among adolescent mothers and subsequent bone mineral density. Arch Pediatr Adolesc Med. 2004; 158: 650656.
  • 27
    Nissenson RA, Jüppner H. Parathyroid hormone. In: Rosen CJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 7th Edition. Washington, DC: American Society for Bone and Mineral Research; 2008: 123127.
  • 28
    Wysolmerski JJ. Parathyroid hormone-related protein. In: Rosen CJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 7th Edition. Washington, DC: American Society for Bone and Mineral Research; 2008: 127133.
  • 29
    Krause C, Gorter DJ, Karperien M, ten Dijke P. Signal transduction cascades controlling osteoblast differentiation. In: Rosen CJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 7th Edition. Washington, DC: American Society for Bone and Mineral Research; 2008: 1016.
  • 30
    Cosman F, Greenspan SL. Parathyroid hormone treatment for osteoporosis. In: Rosen CJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 7th Edition. Washington, DC: American Society for Bone and Mineral Research; 2008: 244249.
  • 31
    Ross FP. Osteoclast biology and bone resorption. In: Rosen CJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 7th Edition. Washington, DC: American Society for Bone and Mineral Research; 2008: 1622.
  • 32
    Miao D, He B, Jiang Y, et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest. 2005; 115: 24022411.
  • 33
    Miao D, Li J, Xue Y, Su H, Karaplis AC, Goltzman D. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology. 2004; 145: 35543562.
  • 34
    Amizuka N, Karaplis AC, Henderson JE, et al. Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol. 1996; 175: 166176.
  • 35
    Bluher M, Michael MD, Peroni OD, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002; 3: 2538.
  • 36
    Sharpe CJ, Fudge NJ, Kovacs CS. A rapid 35% flux in bone mass occurs during pregnancy and lactation cycles in mice [abstract]. International Bone and Mineral Society Meeting, Osaka, Japan, June 3-7, 2003. Bone. 2003; 32 (Suppl): S227.
  • 37
    Simmonds CS, Karsenty G, Karaplis AC, Kovacs CS. Parathyroid Hormone Regulates Fetal-Placental Mineral Homeostasis. J Bone Miner Res. 2010; 25: 594605.
  • 38
    Kovacs CS, Woodland ML, Fudge NJ, Friel JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer. Am J Physiol Endocrinol Metab. 2005; 289: E133E144.
  • 39
    Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987; 2: 595610.
  • 40
    Sims NA, Brennan K, Spaliviero J, Handelsman DJ, Seibel MJ. Perinatal testosterone surge is required for normal adult bone size but not for normal bone remodeling. Am J Physiol Endocrinol Metab. 2006; 290: E456462.
  • 41
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 402408.
  • 42
    Liu X, Ardeshirpour L, VanHouten J, et al. Site-specific changes in bone microarchitecture and micromechanics during lactation and after weaning in mice. J Bone Miner Res. 2010; 2010 (Suppl 1): Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=96b00cba-af95f-94e79-afa93-69d91bdc7714c.
  • 43
    Phillips AJ, Ostlere SJ, Smith R. Pregnancy-associated osteoporosis: does the skeleton recover? Osteoporos Int. 2000; 11: 449454.
  • 44
    Dunne F, Walters B, Marshall T, Heath DA. Pregnancy associated osteoporosis. Clin Endocrinol (Oxf). 1993; 39: 487490.
  • 45
    Wysolmerski JJ. The evolutionary origins of maternal calcium and bone metabolism during lactation. J Mammary Gland Biol Neoplasia. 2002; 7: 267276.
  • 46
    Kovacs CS, Kirby BJ, Woodrow JP, Gagel RF, Sims NA. Lack of calcitonin accentuates bone loss during lactation by enhanced osteoclast formation and reduced osteoblast formation [abstract]. J Bone Miner Res. 2008; 23: S171.
  • 47
    Ardeshirpour L, Dann P, Adams DJ, et al. Weaning triggers a decrease in receptor activator of nuclear factor-kappaB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology. 2007; 148: 38753886.
  • 48
    Miller SC, Anderson BL, Bowman BM. Weaning initiates a rapid and powerful anabolic phase in the rat maternal skeleton. Biol Reprod. 2005; 73: 156162.
  • 49
    Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci U S A. 1996; 93: 1523315238.