• hnRNP;
  • RANKL;
  • BONE


The heterogeneous nuclear ribonucleoprotein (hnRNP)–like estrogen response element–binding protein (ERE-BP) competes with estrogen receptor α (ERα) for occupancy of estrogen response elements (EREs). Here we report that ERE-BP potently stimulates osteoclastogenesis. ERE-BP mRNA and protein were found to be expressed ubiquitously in bone. Overexpression of ERE-BP in cultured osteoblasts stimulated expression of the receptor activator of NF-κB ligand (RANKL) and decreased osteoprotegerin (OPG). The effect of ERE-BP on RANKL was shown to be transcriptional in transient transfection assay and competed with via the ER. Constitutive expression of ERE-BP increased the sensitivity of cells toward 1,25-dihydroxyvitamin D3 stimulation of RANKL expression. In contrast, knockdown of ERE-BP in stromal ST-2 cells decreased basal RANKL promoter activity. Cocultures of ERE-BP lentivirus–transduced ST-2 cells with spleen monocytes induced formation of multinucleated osteoclasts (OCs) characterized by tartrate-resistant acid phosphatase, calcitonin receptors, and functional calcium resorption from bone slices. Although ERα competed with ERE-BP for an ERE in a dose-dependent manner, ERE-BP was an independent and potent regulator of RANKL and osteoclastogenesis. In preosteoclastic RAW cells, overexpression of ERE-BP increased RANK, upregulated NF-κB signaling, and enhanced differentiation toward a mature OC phenotype independent of RANKL. These results identify ERE-BP as a potent modulator of osteoclastogenesis. We hypothesize that ERE-BP may play a critical role in the regulation of bone homeostasis as a modulator of estrogen sensitivity as well as by direct action on the transcription of critical osteoclastogenic genes. © 2011 American Society for Bone and Mineral Research