SEARCH

SEARCH BY CITATION

References

  • 1
    Gerber H-P, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Medicine. 1999; 5: 623628.
  • 2
    Silva M, Uthgenannt BA, Rutlin JR, Wohl GR, Lewis JS, Welch MJ. In vivo skeletal imaging of 18F-fluoride with positron emission tomography reveals damage- and time-dependent responses to fatigue loading in the rat ulna. Bone. 2006; 39: 229236.
  • 3
    Matsuzaki H, Wohl GR, Novack DV, Lynch JA, Silva MJ. Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna. Calcif Tissue Int. 2007; 80: 391399.
  • 4
    Parfitt A. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994; 55: 273286.
  • 5
    Yao Z, Lafage-Proust MH, Plouët J, Bloomfield S, Alexandre C, Vico L. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J Bone Miner Res. 2004; 19: 14711480.
  • 6
    Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T. Changes in trabecular bone, hematopoiesis and bone-marrow vessels in aplastic-anemia, primary osteoporosis, and old-age: a comparative histomorphometric study. Bone. 1987; 8: 157164.
  • 7
    Prisby R, Ramsey MW, Behnke BJ, Dominguez JM, Donato AJ, Allen MR, Delp MD. Aging reduces skeletal blood flow, endothelium-dependent vasodilation and nitric oxide bioavailability in rats. J. Bone Min Res. 2007; 22: 12801288.
  • 8
    Dominguez JM, Prisby RD, Muller-Delp JM, Allen MR, Delp MD. Increased nitric oxide-mediated vasodilation of bone resistance arteries is associated with increased trabecular bone volume after endurance training in rats. Bone. 2010; 46: 813819.
  • 9
    Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone. 2009; 44: 10261033.
  • 10
    Jüppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF Jr, Hock J, Potts JT Jr, Kronenberg HM., et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991; 254: 10241026.
  • 11
    Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates the endothelial nitric oxide synthase through protein kinase A and C pathways. Nephrol Dial Transplant. 2007; 10: 28312837.
  • 12
    Wang D, Yamazaki K, Nohtomi K, Shizume K, Ohsumi K, Shibuya M, Demura H, Sato K. Increase of vascular endothelial growth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblast-like cells. J Bone Miner Res. 1996; 11: 472479.
  • 13
    Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates the endothelial expression of vascular endothelial growth factor. Eur J Clin Invest. 2008; 38: 798803.
  • 14
    Eckardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES, Hvid I. Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res. 2003; 21: 335340.
  • 15
    Fogarty J, Muller-Delp JM, Delp MD, Mattox ML, Laughlin MH, Parker JL. Exercise training enhances vasodilation responses to vascular endothelial growth factor in porcine coronary arterioles exposed to chronic coronary occlusion. Circulation. 2004; 109: 664670.
  • 16
    Métais C, Li J, Li J, Simons M, Sellke FW. Effects of coronary artery disease on expression and microvascular response to VEGF. Am J Physiol. 1998; 275: H1411H1418.
  • 17
    Ashrafpour H, Huang N, Neligan PC, Forrest CR, Addison PD, Moses MA, Levine RH, Pang CY. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am J Physiol Heart Circ Physiol. 2004; 286: H946H954.
  • 18
    Verhaar H, Lems WF. PTH-analogs: comparable or different. Arch Gerontol Geriatr. 2009; 49: e130e132.
  • 19
    Fei J, Peyrin F, Malaval L, Vico L, Lafage-Proust MH. Imaging and quantitative assessment of long bone vascularization in the adult rat using microcomputed tomography. Anat Rec (Hoboken). 2010; 293: 215224.
  • 20
    David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexandre C, Ruegsegger P, Vico L. Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res. 2003; 18: 16221631.
  • 21
    Salomé M, Peyrin F, Cloetens P, Odet C, Laval-Jeantet AM, Baruchel J, Spanne P. A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Med Phys. 1999; 26: 21942204.
  • 22
    Labiche J-C, Maton O, Pascarelli S, Newton MA, Ferre GC, Curfs C, Vaughan G, Homs A, Carreiras DF. Invited article: the fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev Sci Instrum. 2007; 78(091301).
  • 23
    Langer M, Prisby R, Peter Z, Lafage-Proust M-H, Peyrin F. Simultaneous 3D imaging of bone and vessel microstructure in a rat model. IEEE Transactions on Nuclear Science. 2011; 58: 139145.
  • 24
    Chomcznski P, Mackey K. Modification of the Tri Reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 1995; 19: 942945.
  • 25
    Brookes M. Sequelae of experimental partial ischaemia in long bones of the rabbit. J Anat. 1960; 94: 552561.
  • 26
    De Saint-Georges L, Miller SC. The micocirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones. Anat Rec. 1992; 233: 169177.
  • 27
    Parfitt A. The mechanism of coupling: A role for the vasculature. Bone. 2000; 26: 319323.
  • 28
    Cosman F, Greenspan S. Parathyroid hormone treatment for osteoporosis. In: Miller P, Papapoulos S, (eds.) Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism Washington DC, USA: American Society for Bone and Mineral Research; 2008. pp. 244249.
  • 29
    Cochrane E, McCarthy ID. Rapid effects of parathyroid hormone(1-34) and prostaglandin E2 on bone blood flow and strontium clearance in the rat in vivo. J Endocrinol. 1991; 131: 359365.
  • 30
    Boelkins J, Mazurkiewicz M, Mazur PE, Mueller WJ. Changes in blood flow to bones during the hypocalcemic and hypercalcemic phases of the response to parathyroid hormone. Endocrinology. 1976; 98: 403412.
  • 31
    Shimoyama M, Ogino K, Uchida K, Furuse Y, Kinugasa Y, Taniguchim S, Igawa O, Hisatome I, Bilezikian JP, Shigemasa C. Fragment-specific actions of parathyroid hormone in isolated perfused rat hearts. Calcif Tissue Int. 2001; 69: 8893.
  • 32
    Towler D. Vascular endothelial growth factor and osteogenic-angiogenic coupling. In: Bilezikian J, Raisz LG, Martin TJ, (eds.) Principles of Bone Biology San Diego, CA, USA: Elsevier; 2008. pp. 11331144.
  • 33
    Deckers M, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 2000; 141: 16671674.
  • 34
    Banerjee S, Mehta S, Haque I, Sengupta K, Dhar K, Kambhampati S, Van Veldhuizen PJ, Banerje SK. VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis. Biochemistry. 2008; 47: 33453351.
  • 35
    Yang S, Yan S, Niu RL, Lin XK. VEGF gene silencing by cytomegalovirus promoter driven shRNA expression vector results in vascular development defects in zebrafish. Genetika. 2009; 45: 11871193.
  • 36
    Harper J, Gerstenfeld LC, Klagsbrun M. Neuropilin-1 expression in osteogenic cells: down-regulation during differentiation of osteoblasts into osteocytes. J Cell Biochem. 2001; 81: 8292.
  • 37
    Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, Dallas NA, Fan F, Xia L, Lu J, Ellis LM. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res. 2009; 15: 67636770.
  • 38
    Gomez C, Burt-Pichat B, Mallein-Gerin F, Merle B, Delmas PD, Skerry TM, Vico L, Malaval L, Chenu C. Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation. Dev Dyn. 2005; 234: 393403.
  • 39
    Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone. 2002; 30: 472477.
  • 40
    Brookes M, Revell WJ. Blood Supply of Bone: Scientific Aspects London: Springer-Verlag; 1998.
  • 41
    Huang M, Lu J, Ivanov Y, Sage AP, Tseng W, Demer LL, Tintut Y. Hyperlipidemia impairs osteoanabolic effects of PTH. J Bone Miner Res. 2008; 23: 16721679.
  • 42
    Dempster D, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, Shane E, Plavetić K, Müller R, Bilezikian J, Lindsay R. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001; 16: 18461853.
  • 43
    Rickard D, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006; 39: 13611372.
  • 44
    Kuznetsov S, Riminucci M, Ziran N, Tsutsui TW, Corsi A, Calvi L, Kronenberg HM, Schipani E, Robey PG, Bianco P. The interplay of osteogenesis and hematopoiesis: expression of a constitutively active PTH/PTHrP receptor in osteogenic cells perturbs the establishment of hematopoiesis in bone and of skeletal stem cells in the bone marrow. J Cell Biol. 2004; 167: 11131122.
  • 45
    Pettway G, Schneider A, Koh AJ, Widjaja E, Morris MD, Meganck JA, Goldstein SA, McCauley LK. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone. 2005; 36: 959970.
  • 46
    Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology. 1995; 136: 36323638.
  • 47
    Friedl G, Turner RT, Evans GL, Dobnig H. Intermittent parathyroid hormone (PTH) treatment and age-dependent effects on rat cancellous bone and mineral metabolism. J Orthop Res. 2007; 25: 14541464.