Differential regulation of receptor-stimulated cyclic adenosine monophosphate production by polyvalent cations in MC3T3-E1 osteoblasts

Authors


Abstract

Extracellular cations have paradoxical trophic and toxic effects on osteoblast function. In an effort to explain these divergent actions, we investigated in MC3T3-E1 osteoblasts if polyvalent cations differentially modulate the agonist-stimulated cyclic adenosine monophosphate (cAMP) pathway, an important regulator of osteoblastic function. We found that a panel of cations, including gadolinium, aluminum, calcium, and neomycin, inhibited prostaglandin E1 (PGE)-stimulated cAMP accumulation but paradoxically potentiated parathyroid hormone (PTH)-stimulated cAMP production. In contrast, these cations had no effect on forskolin- or cholera toxin–induced increases in cAMP, suggesting actions proximal to adenylate cyclase and possible modulation of receptor interactions with G proteins. Phorbol 12-myristate 13-acetated (PMA) mimicked the effects of cations on PGE1-and PTH-stimulated cAMP accumulation in MC3T3-E1 cells, respectively, diminishing and augmenting the responses. Moreover, down-regulation of protein kinase C (PKC) by overnight treatment with PMA prevented gadolinium (Gd3+) from attenuating PGE1- and enhancing PTH-stimulated cAMP production, indicating involvement of PKC-dependent pathways. Cations, however, activated signal transduction pathways not coupled to phosphatidylinositol-specific phospholipase C (PI-PLC), since there was no corresponding increase in inositol phosphate formation or intracellular calcium concentrations. In addition, pertussis toxin treatment failed to prevent Gd3+-mediated suppression of PGE1-Stimulated cAMP, suggesting actions independent of Gαi. Thus, polyvalent cations may either stimulate or inhibit hormone-mediated cAMP accumulation in osteoblasts. These differential actions provide a potential explanation for the paradoxical trophic and toxic effects of cations on osteoblast function that occur in vivo under different hormonal conditions.

Ancillary