• Heat Shock Protein 70;
  • cDNA Sequence;
  • mRNA Expression;
  • Liver;
  • Microcystin Tolerance;
  • Freshwater Fishes


Heat shock protein 70 (HSP70) protect cell from oxidative stress by preventing the irreversible loss of vital proteins and facilitating their subsequent regeneration. Silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon idellus), and Nile tilapia (Oreochromis nilotica) are three warm freshwater fishes with differential tolerance to microcystin-LR (MC-LR). Full-length cDNAs encoding the HSP70 were cloned from the livers of the three fishes. The HSP70 cDNAs of silver carp, grass carp, and Nile tilapia were 2356, 2348, and 2242 bp in length and contained an open-reading frame of 1950 bp (encoding a polypeptide of 649 amino acids), 1950 bp (649 amino acids), and 1917 bp (638 amino acids), respectively. Like mammalian HSP70, the HSP70 of the three fish was also composed of an ATPase domain from residues 1 to 383 (44 kDa), substrate peptide binding domain from residues 384 to 544 (18 kDa), and a C-terminus domain from residues 545 to 649 (10 kDa). The relatively high conservation of HSP70 sequences among different vertebrates is consistent with their important role in fundamental cellular processes. Using beta-actin as an external control, RT-PCR within the exponential phase was conducted to determine the constitutive and inducible expression level of HSP70 gene among the three fishes (6–12 g) intraperitoneally injected with MC-LR (50 μg kg−1 body weight). Both constitutive and inducible liver mRNA levels of the fish HSP70 genes showed positive relationships with their tolerance to MC-LR: highest in Nile tilapia, followed by silver carp, and lowest in grass carp. The differential expression pattern of liver HSP70 genes in the three fish indicated a potential role of HSP70 in the detoxification process of MC-LR. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:293–302, 2010; View this article online at DOI 10.1002/jbt.20338