• Parecoxib;
  • Human Serum Albumin;
  • Fluorescence;
  • Circular Dichroism;
  • FTIR;
  • Molecular Docking


Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three-dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 104 M−1 at 298 K. It can be seen from far-UV CD spectra that the α-helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA.