The rate of thermal inactivation of the unliganded human Ah receptor, studied by sucrose density gradient centrifugation, with respect to loss of ligand binding ability, was found to be greater than those of most rodents at 20°C, but the temperature coefficient of the rate constant was much smaller than for the rodent species. This implies that the unliganded human Ah receptor would be thermally more stable than the rodent analogs at physiological temperatures. The liganded form of the human Ah receptor was found to be less stable with respect to ligand release than the rodent receptors. These differences in behavior between human and rodent Ah receptors underline the difficulties in using rodent data in the development of receptor-based models of dioxin toxicity. Attempts to develop an alternative to sucrose density gradient centrifugation, comparable with the hydroxylapatite adsorption method used to assay rodent hepatic Ah receptor, were unsuccessful.