Unwinding protein complexes in ALTernative telomere maintenance

Authors

  • Saumitri Bhattacharyya,

    1. Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Avenue, 986 Biomedical Research Tower, Columbus, Ohio 43210-2207
    Search for more papers by this author
  • April Sandy,

    1. Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Avenue, 986 Biomedical Research Tower, Columbus, Ohio 43210-2207
    Search for more papers by this author
  • Joanna Groden

    Corresponding author
    1. Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Avenue, 986 Biomedical Research Tower, Columbus, Ohio 43210-2207
    • 460 W 12 Ave, 986 Biomedical Research Tower, Columbus, OH 43210-2207.
    Search for more papers by this author

Abstract

Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA-binding proteins and a number of three dimensional nucleic acid structures including G-quartets and D-loops. A number of studies suggest that the BLM and WRN recQ-like helicases play important roles in recombination-mediated mechanisms of telomere elongation or Alternative Lengthening of Telomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT-associated nuclear bodies in telomerase-negative immortalized cell lines and interact with the telomere-specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double-strand break repair processes such as non-homologous end joining, homologous recombination-mediated repair, resolution of stalled replication forks and synthesis-dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ-like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec-Q-like helicases and their role in telomere elongation during ALT processes. J. Cell. Biochem. 109: 7–15, 2010. © 2009 Wiley-Liss, Inc.

Ancillary