Vasostatin 1 activates eNOS in endothelial cells through a proteoglycan-dependent mechanism



Accumulating evidences point to a significant role for the chromogranin A (CgA)-derived peptide vasostatin 1 (VS-1) in the protective modulation of the cardiovascular activity, because of its ability to counteract the adrenergic signal. We have recently shown that VS-1 induces a PI3K-dependent-nitric oxide (NO) release by endothelial cells, contributing to explain the mechanism of its cardio-suppressive and vasodilator properties. However, the cellular processes upstream the eNOS activation exerted by this peptide are still unknown, as typical high-affinity receptors have not been identified. Here we hypothesize that in endothelial cells VS-1 acts, on the basis of its cationic and amphipathic properties, as a cell penetrating peptide, binding to heparan sulfate proteoglycans (HSPGs) and activating eNOS phosphorylation (Ser1179) through a PI3K-dependent, endocytosis-coupled mechanism. In bovine aortic endothelial cells (BAE-1 cells) endocytotic vesicles trafficking was quantified by confocal microscopy with a water-soluble membrane dye; caveolin 1 (Cav1) shift from plasma membrane was studied by immunofluorescence staining; VS-1-dependent eNOS phosphorylation was assessed by immunofluorescence and immunoblot analysis. Our experiments demonstrate that VS-1 induces a marked increase in the caveolae-dependent endocytosis, (115 ± 23% endocytotic spots/cell/field in VS-1-treated cells with respect to control cells), that is significantly reduced by both heparinase III (HEP, 17 ± 15% above control) and Wortmannin (Wm, 7 ± 22% above control). Heparinase, Wortmannin, and methyl-β-cyclodextrin (MβCD) abolish the VS-1-dependent eNOS phosphorylation (PSer1179eNOS). These results suggest a novel signal transduction pathway for endogenous cationic and amphipathic peptides in endothelial cells: HSPGs interaction and caveolae endocytosis, coupled with a PI3K-dependent eNOS phosphorylation. J. Cell. Biochem. 110: 70–79, 2010. © 2010 Wiley-Liss, Inc.