Glucocorticoids coordinately regulate type I collagen proα1 promoter activity through both the glucocorticoid and transforming growth factor β response elements: A novel mechanism of glucocorticoid regulation of eukaryotic genes



Glucocorticoids have previously been shown to decrease Type 1 collagen synthesis in vivo and in fibroblast cell culture. Several studies have demonstrated that glucocorticoids decrease Type 1 procollagen gene expression. These latter studies have included uridine incorporation into proα1(I) and proα2(1) mRNas and nuclear run-off experiments. Using the ColCat 3.6 plasmid, which contains part of the 5' flanking regionof the proα1 (1) coullagen gene and the reporter gene, chljoramphenicol acetyltransferase, the present studies demonstrate by stable transfection of fetal rat skin fibrolblasts that dexamethasone down regulates the promoter activity of the proα1(I) collagen gene. The glucocorticoid-mediated down-regulastionof procolljagen gene expression was demonstrated using the ColCat 3.6, 2.4, 1.7, or 0.9 plasmid. In addition, competitive oligonucleotide transfection experiments and site specific mutation of the glucocorticoid response element (GRE) in the whoulue ColCat 3.6 plasmid did not elimiinatre the effect. The ipossibility existed that another cis-element inthe 5' flanking region of the proα1(I) collagen gene was also required for the glucocorticoid-mediated down-regulation of procollagen gene expression, since TGF-β has been shown to stimulate collagen proα1(I) and proα2(I) gene activities. Dexamethasone treatment of non-transfected skin fibroblasts did result in a decrease of transforming growth factor-β. The decrease of CVAT activity by dexamethasone was brought back to control value by the addition of exogenous TGF-β to the culture media. Gel mobility studies demonstrated that glucocorticoid treatment of rat skin fibroblasts decreased glucocorticoid recptor binding to the GRE and TGF-β activator protein to the TGF-β element which were brought back to control values by coordinate exogenous TGF-β treatment. Thus the interaction of these TGF-β molecules with cellular membrane receptors and subsequent rtransduction is dramatically decreased resulting in less signals to regulate collagen gene expression. These data indicate that glucocorticoids coordinately regulate procollagen gene expfrssion through both the GRE and TGF-β elements. Depression of procollagen gene expression by glucocorticoids through the TGF-β element is mediated by decreased TGF-β secretion, possibly involving a secondary effect on regulatory protein(s) encoded by noncollagenous protein gene(s). The present studies provide the bassis for a novel mechanism of glucocorticoid-mediated regulation of eukaryotic genes containing the TGF-β element. © 1995 Wiley-Liss, Inc.