Get access

Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases

Authors

  • Eun A. Cho,

    1. Bionanotechnology Research Center, KRIBB, Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
    2. Department of Biological Science, Chungnam National University, Yusong-gu, Daejeon 305-764, Republic of Korea
    Search for more papers by this author
  • Hyun Kyung Song,

    1. Bionanotechnology Research Center, KRIBB, Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
    2. Department of Nanobiotechnology, University of Science and Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
    Search for more papers by this author
  • Sang-Hyeup Lee,

    1. Department of Life Chemistry, The Catholic University of Daegu, Gyeongsan-si, Gyeongbuk 712-702, Republic of Korea
    Search for more papers by this author
  • Bong Hyun Chung,

    1. Bionanotechnology Research Center, KRIBB, Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
    2. Department of Nanobiotechnology, University of Science and Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
    Search for more papers by this author
  • Heon Man Lim,

    1. Department of Biological Science, Chungnam National University, Yusong-gu, Daejeon 305-764, Republic of Korea
    Search for more papers by this author
  • Myung Kyu Lee

    Corresponding author
    1. Bionanotechnology Research Center, KRIBB, Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
    2. Department of Nanobiotechnology, University of Science and Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
    • Bionanotechnology Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.
    Search for more papers by this author

Abstract

Hypoxia inducible factor 1α (HIF-1α), an essential transcriptional factor, is negatively regulated by two different types of oxygen and Fe2+-dependent HIF hydroxylases, proline hydroxylase (PHD) and factor inhibiting HIF (FIH), under normoxia. Iron chelators have therefore been used for inducing HIF-1α expression by inhibiting the hydroxylases. In this study, the iron chelators displayed differential effects for PHD and FIH in cells depending on their iron specificity and membrane permeability rather than their in vitro potencies. The membrane permeability of the strict Fe2+-chelator potentially inhibited both hydroxylases, whereas the membrane impermeable one showed no inhibitory effect in cells. In contrast, the depletion of the extracellular Fe3+ ion was mainly correlated to PHD inhibition, and the membrane permeable one elicited low efficacy for both enzymes in cells. The 3′-hydroxyl group of quercetin, a natural flavonoid, was critical for inhibition of intracellular hydroxylases. Since the 3′-methylation of quercetin is induced by catechol-O-methyl transferase, the enzyme may regulate the intracellular activity of quercetin. These data suggest that the multiple factors of iron-chelators may be responsible for regulating the intracellular activity HIF hydroxylases. J. Cell. Biochem. 114: 864–873, 2013. © 2012 Wiley Periodicals, Inc.

Ancillary