Journal of Cellular Biochemistry

Transglutaminase-2 mediates calcium-regulated crosslinking of the Y-Box 1 (YB-1) translation-regulatory protein in TGFβ1-activated myofibroblasts

Authors

  • William L. Willis,

    1. Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
    Search for more papers by this author
  • Seethalakshmi Hariharan,

    1. Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
    Search for more papers by this author
  • Jason J. David,

    1. Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
    Search for more papers by this author
  • Arthur Roger Strauch

    Corresponding author
    1. Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
    • Correspondence: Arthur Roger Strauch, PhD, Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, 460 West 12th Avenue, BRT 314, Columbus, OH 43210.

      E-mail: strauch.1@osu.edu

    Search for more papers by this author

ABSTRACT

Myofibroblast differentiation is required for wound healing and accompanied by activation of smooth muscle α-actin (SMαA) gene expression. The stress-response protein, Y-box binding protein-1 (YB-1) binds SMαA mRNA and regulates its translational activity. Activation of SMαA gene expression in human pulmonary myofibroblasts by TGFβ1 was associated with formation of denaturation-resistant YB-1 oligomers with selective affinity for a known translation-silencer sequence in SMαA mRNA. We have determined that YB-1 is a substrate for the protein-crosslinking enzyme transglutaminase 2 (TG2) that catalyzes calcium-dependent formation of covalent γ-glutamyl-isopeptide linkages in response to reactive oxygen signaling. TG2 transamidation reactions using intact cells, cell lysates, and recombinant YB-1 revealed covalent crosslinking of the 50 kDa YB-1 polypeptide into protein oligomers that were distributed during SDS–PAGE over a 75–250 kDa size range. In vitro YB-1 transamidation required nanomolar levels of calcium and was enhanced by the presence of SMαA mRNA. In human pulmonary fibroblasts, YB-1 crosslinking was inhibited by (a) anti-oxidant cystamine, (b) the reactive-oxygen antagonist, diphenyleneiodonium, (c) competitive inhibition of TG2 transamidation using the aminyl-surrogate substrate, monodansylcadaverine, and (d) transfection with small-interfering RNA specific for human TG2 mRNA. YB-1 crosslinking was partially reversible as a function of oligomer-substrate availability and TG2 enzyme concentration. Intracellular calcium accumulation and peroxidative stress in injury-activated myofibroblasts may govern SMαA mRNA translational activity during wound healing via TG2-mediated crosslinking of the YB-1 mRNA-binding protein. J. Cell. Biochem. 114: 2753–2769, 2013. © 2013 Wiley Periodicals, Inc.

Ancillary