Four-component relativistic Kohn–Sham theory



A four-component relativistic implementation of Kohn–Sham theory for molecular systems is presented. The implementation is based on a nonredundant exponential parametrization of the Kohn–Sham energy, well suited to studies of molecular static and dynamic properties as well as of total electronic energies. Calculations are presented of the bond lengths and the harmonic and anharmonic vibrational frequencies of Au2, Hgmath image, HgAu+, HgPt, and AuH. All calculations are based on the full four-component Dirac–Coulomb Hamiltonian, employing nonrelativistic local, gradient-corrected, and hybrid density functionals. The relevance of the Coulomb and Breit operators for the construction of relativistic functionals is discussed; it is argued that, at the relativistic level of density-functional theory and in the absence of a vector potential, the neglect of current functionals follows from the neglect of the Breit operator. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 814–823, 2002