Get access

OH hydrogen abstraction reactions from alanine and glycine: A quantum mechanical approach

Authors

  • Annia Galano,

    1. Universidad Autónoma Metropolitana, Iztapalapa, 09340, México D. F., México
    2. Laboratorio de Química Computational y Teórica, Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba
    Search for more papers by this author
  • J. Raúl Alvarez-Idaboy,

    Corresponding author
    1. Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730, México D. F., México
    2. Laboratorio de Química Computational y Teórica, Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba
    • Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730, México D. F., México, Laboratorio de Química Computational y Teórica, Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba
    Search for more papers by this author
  • Luis A. Montero,

    1. Laboratorio de Química Computational y Teórica, Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba
    Search for more papers by this author
  • Annik Vivier–Bunge

    1. Universidad Autónoma Metropolitana, Iztapalapa, 09340, México D. F., México
    Search for more papers by this author

Abstract

Density functional theory (B3LYP and BHandHLYP) and unrestricted second-order Møller–Plesset (MP2) calculations have been performed using 3-21G, 6-31G(d,p), and 6-311 G(2d,2p) basis sets, to study the OH hydrogen abstraction reaction from alanine and glycine. The structures of the different stationary points are discussed. Ring-like structures are found for all the transition states. Reaction profiles are modeled including the formation of prereactive complexes, and very low or negative net energy barriers are obtained depending on the method and on the reacting site. ZPE and thermal corrections to the energy for all the species, and BSSE corrections for B3LYP activation energies are included. A complex mechanism involving the formation of a prereactive complex is proposed, and the rate coefficients for the overall reactions are calculated using classical transition state theory. The predicted values of the rate coefficients are 3.54×108 L⋅mol−1⋅s−1 for glycine and 1.38×109 L⋅mol−1⋅s−1 for alanine. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1138–1153, 2001

Ancillary