SEARCH

SEARCH BY CITATION

Keywords:

  • therapeutic protein deimmunization;
  • T-cell epitope;
  • Rosetta design;
  • flexible-backbone protein design;
  • biologics

Abstract

The protein universe displays a wealth of therapeutically relevant activities, but T-cell driven immune responses to non-“self” biological agents present a major impediment to harnessing the full diversity of these molecular functions. Mutagenic T-cell epitope deletion seeks to mitigate the immune response, but can typically address only a small number of epitopes. Here, we pursue a “bottom-up” approach that redesigns an entire protein to remain native-like but contain few if any immunogenic epitopes. We do so by extending the Rosetta flexible-backbone protein design software with an epitope scoring mechanism and appropriate constraints. The method is benchmarked with a diverse panel of proteins and applied to three targets of therapeutic interest. We show that the deimmunized designs indeed have minimal predicted epitope content and are native-like in terms of various quality measures, and moreover that they display levels of native sequence recovery comparable to those of non-deimmunized designs. © 2013 Wiley Periodicals, Inc.