Get access

A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics

Authors

  • Michel Masella,

    Corresponding author
    1. Laboratoire de Chimie du Vivant, Service d'ingénierie moléculaire des protéines, Institut de biologie et de technologies de Saclay, Commissariat à l'énergie atomique, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France
    • Laboratoire de Chimie du Vivant, Service d'ingénierie moléculaire des protéines, Institut de biologie et de technologies de Saclay, Commissariat à l'énergie atomique, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France

    Search for more papers by this author
  • Daniel Borgis,

    1. UMR Pasteur, Département de Chimie, École Normale Supérieure, 24 rue Lhommond, 75231 Paris Cedex 05, France
    Search for more papers by this author
  • Philippe Cuniasse

    1. Laboratoire de Chimie du Vivant, Service d'ingénierie moléculaire des protéines, Institut de biologie et de technologies de Saclay, Commissariat à l'énergie atomique, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France
    Search for more papers by this author

Abstract

A multiscale coarse-grained approach able to handle efficiently the solvation of microscopic solutes in extended chemical environment is described. That approach is able to compute readily and efficiently very long-range solute/solvent electrostatic microscopic interactions, up to the 1-μm scale, by considering a reduced amount of computational resources. All the required parameters are assigned to reproduce available data concerning the solvation of single ions. Such a strategy makes it possible to reproduce with good accuracy the solvation properties concerning simple ion pairs in solution (in particular, the asymptotic behavior of the ion pair potentials of mean force). This new method represents an extension of the polarizable pseudoparticle solvent model, which has been recently improved to account for the main features of hydrophobic effects in liquid water (Masella et al., J. Comput. Chem. 2011, 32, 2664). This multiscale approach is well suited to be used for computing the impact of charge changes in free energy computations, in terms of both accuracy and efficiency. © 2013 Wiley Periodicals, Inc.

Ancillary